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Chapter 1

Introduction

Top, Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 9, A
This book covers techniques for the design and analysis
of algorithms. The algorithmic techniques covered in-
clude: divide and conquer, backtracking, dynamic pro-
gramming, greedy algorithms, and hill-climbing.
Any solvable problem generally has at least one algorithm
of each of the following types:

1. the obvious way;

2. the methodical way;

3. the clever way; and

4. the miraculous way.

On the first and most basic level, the “obvious” solution
might try to exhaustively search for the answer. Intu-
itively, the obvious solution is the one that comes easily
if you're familiar with a programming language and the
basic problem solving techniques.
The second level is the methodical level and is the heart
of this book: after understanding the material presented
here you should be able tomethodically turnmost obvious
algorithms into better performing algorithms.
The third level, the clever level, requires more under-
standing of the elements involved in the problem and
their properties or even a reformulation of the algorithm
(e.g., numerical algorithms exploit mathematical proper-
ties that are not obvious). A clever algorithmmay be hard
to understand by being non-obvious that it is correct, or it
may be hard to understand that it actually runs faster than
what it would seem to require.
The fourth and final level of an algorithmic solution is the
miraculous level: this is reserved for the rare cases where
a breakthrough results in a highly non-intuitive solution.
Naturally, all of these four levels are relative, and some
clever algorithms are covered in this book as well, in ad-
dition to the methodical techniques. Let’s begin.

1.1 Prerequisites

To understand the material presented in this book you
need to know a programming language well enough to
translate the pseudocode in this book into a working solu-
tion. You also need to know the basics about the follow-
ing data structures: arrays, stacks, queues, linked-lists,
trees, heaps (also called priority queues), disjoint sets,
and graphs.
Additionally, you should know some basic algorithms like
binary search, a sorting algorithm (merge sort, heap sort,
insertion sort, or others), and breadth-first or depth-first
search.
If you are unfamiliar with any of these prerequisites you
should review the material in the Data Structures book
first.

1.2 When is Efficiency Important?

Not every problem requires the most efficient solution
available. For our purposes, the term efficient is con-
cerned with the time and/or space needed to perform the
task. When either time or space is abundant and cheap, it
may not be worth it to pay a programmer to spend a day
or so working to make a program faster.
However, here are some cases where efficiency matters:

• When resources are limited, a change in algorithms
could create great savings and allow limited ma-
chines (like cell phones, embedded systems, and
sensor networks) to be stretched to the frontier of
possibility.

• When the data is large a more efficient solution can
mean the difference between a task finishing in two
days versus two weeks. Examples include physics,
genetics, web searches, massive online stores, and
network traffic analysis.

• Real time applications: the term “real time appli-
cations” actually refers to computations that give
time guarantees, versus meaning “fast.” However,
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2 CHAPTER 1. INTRODUCTION

the quality can be increased further by choosing the
appropriate algorithm.

• Computationally expensive jobs, like fluid dynam-
ics, partial differential equations, VLSI design, and
cryptanalysis can sometimes only be considered
when the solution is found efficiently enough.

• When a subroutine is common and frequently used,
time spent on a more efficient implementation can
result in benefits for every application that uses
the subroutine. Examples include sorting, search-
ing, pseudorandom number generation, kernel oper-
ations (not to be confused with the operating system
kernel), database queries, and graphics.

In short, it’s important to save time when you do not have
any time to spare.
When is efficiency unimportant? Examples of these cases
include prototypes that are used only a few times, cases
where the input is small, when simplicity and ease of
maintenance is more important, when the area concerned
is not the bottle neck, or when there’s another process or
area in the code that would benefit far more from efficient
design and attention to the algorithm(s).

1.3 Inventing an Algorithm

Because we assume you have some knowledge of a pro-
gramming language, let’s start with how we translate an
idea into an algorithm. Suppose you want to write a func-
tion that will take a string as input and output the string
in lowercase:
// tolower -- translates all alphabetic, uppercase characters
in str to lowercase function tolower(string str): string
What first comes to your mind when you think about
solving this problem? Perhaps these two considerations
crossed your mind:

1. Every character in str needs to be looked at

2. A routine for converting a single character to lower
case is required

The first point is “obvious” because a character that needs
to be converted might appear anywhere in the string. The
second point follows from the first because, once we con-
sider each character, we need to do something with it.
There are many ways of writing the tolower function for
characters:
function tolower(character c): character
There are several ways to implement this function, includ-
ing:

• look c up in a table -- a character indexed array of
characters that holds the lowercase version of each
character.

• check if c is in the range 'A' ≤ c ≤ 'Z', and then add
a numerical offset to it.

These techniques depend upon the character encoding.
(As an issue of separation of concerns, perhaps the table
solution is stronger because it’s clearer you only need to
change one part of the code.)
However such a subroutine is implemented, once we have
it, the implementation of our original problem comes im-
mediately:
// tolower -- translates all alphabetic, uppercase charac-
ters in str to lowercase function tolower(string str): string
let result := "" for-each c in str: result.append(tolower(c))
repeat return result end
This code sample is also available in Ada.

The loop is the result of our ability to translate “every
character needs to be looked at” into our native program-
ming language. It became obvious that the tolower sub-
routine call should be in the loop’s body. The final step
required to bring the high-level task into an implementa-
tion was deciding how to build the resulting string. Here,
we chose to start with the empty string and append char-
acters to the end of it.
Now suppose you want to write a function for comparing
two strings that tests if they are equal, ignoring case:
// equal-ignore-case -- returns true if s and t are equal,
ignoring case function equal-ignore-case(string s, string
t): boolean
These ideas might come to mind:

1. Every character in strings s and t will have to be
looked at

2. A single loop iterating through both might accom-
plish this

3. But such a loop should be careful that the strings are
of equal length first

4. If the strings aren't the same length, then they cannot
be equal because the consideration of ignoring case
doesn't affect how long the string is

5. A tolower subroutine for characters can be used
again, and only the lowercase versions will be com-
pared

These ideas come from familiarity both with strings and
with the looping and conditional constructs in your lan-
guage. The function you thought of may have looked
something like this:

https://en.wikibooks.org/wiki/Ada_Programming/Algorithms#To_Lower
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// equal-ignore-case -- returns true if s or t are equal,
ignoring case function equal-ignore-case(string s[1..n],
string t[1..m]): boolean if n != m: return false \if they
aren't the same length, they aren't equal\ fi for i := 1 to
n: if tolower(s[i]) != tolower(t[i]): return false fi repeat
return true end
This code sample is also available in Ada.

Or, if you thought of the problem in terms of func-
tional decomposition instead of iterations, youmight have
thought of a function more like this:
// equal-ignore-case -- returns true if s or t are equal, ig-
noring case function equal-ignore-case(string s, string t):
boolean return tolower(s).equals(tolower(t)) end
Alternatively, you may feel neither of these solutions is
efficient enough, and you would prefer an algorithm that
only ever made one pass of s or t. The above two im-
plementations each require two-passes: the first version
computes the lengths and then compares each character,
while the second version computes the lowercase versions
of the string and then compares the results to each other.
(Note that for a pair of strings, it is also possible to have
the length precomputed to avoid the second pass, but that
can have its own drawbacks at times.) You could imagine
how similar routines can be written to test string equality
that not only ignore case, but also ignore accents.
Already you might be getting the spirit of the pseudocode
in this book. The pseudocode language is not meant to
be a real programming language: it abstracts away details
that you would have to contend with in any language. For
example, the language doesn't assume generic types or
dynamic versus static types: the idea is that it should be
clear what is intended and it should not be too hard to
convert it to your native language. (However, in doing
so, you might have to make some design decisions that
limit the implementation to one particular type or form
of data.)
There was nothing special about the techniques we used
so far to solve these simple string problems: such tech-
niques are perhaps already in your toolbox, and you may
have found better or more elegant ways of expressing the
solutions in your programming language of choice. In
this book, we explore general algorithmic techniques to
expand your toolbox even further. Taking a naive algo-
rithm and making it more efficient might not come so
immediately, but after understanding the material in this
book you should be able to methodically apply different
solutions, and, most importantly, you will be able to ask
yourself more questions about your programs. Asking
questions can be just as important as answering questions,
because asking the right question can help you reformu-
late the problem and think outside of the box.

1.4 Understanding an Algorithm

Computer programmers need an excellent ability to rea-
son with multiple-layered abstractions. For example,
consider the following code:
function foo(integer a): if (a / 2) * 2 == a: print “The
value " a " is even.” fi end
To understand this example, you need to know that in-
teger division uses truncation and therefore when the if-
condition is true then the least-significant bit in a is zero
(which means that a must be even). Additionally, the
code uses a string printing API and is itself the definition
of a function to be used by different modules. Depend-
ing on the programming task, you may think on the layer
of hardware, on down to the level of processor branch-
prediction or the cache.
Often an understanding of binary is crucial, but many
modern languages have abstractions far enough away
“from the hardware” that these lower-levels are not nec-
essary. Somewhere the abstraction stops: most program-
mers don't need to think about logic gates, nor is the
physics of electronics necessary. Nevertheless, an essen-
tial part of programming is multiple-layer thinking.
But stepping away from computer programs toward al-
gorithms requires another layer: mathematics. A pro-
gram may exploit properties of binary representations.
An algorithm can exploit properties of set theory or other
mathematical constructs. Just as binary itself is not ex-
plicit in a program, the mathematical properties used in
an algorithm are not explicit.
Typically, when an algorithm is introduced, a discussion
(separate from the code) is needed to explain the math-
ematics used by the algorithm. For example, to really
understand a greedy algorithm (such as Dijkstra’s algo-
rithm) you should understand the mathematical proper-
ties that show how the greedy strategy is valid for all cases.
In a way, you can think of themathematics as its own kind
of subroutine that the algorithm invokes. But this “sub-
routine” is not present in the code because there’s nothing
to call. As you read this book try to think about mathe-
matics as an implicit subroutine.

1.5 Overview of the Techniques

The techniques this book covers are highlighted in the
following overview.

• Divide and Conquer: Many problems, particularly
when the input is given in an array, can be solved
by cutting the problem into smaller pieces (divide),
solving the smaller parts recursively (conquer), and
then combining the solutions into a single result. Ex-
amples include the merge sort and quicksort algo-
rithms.

https://en.wikibooks.org/wiki/Ada_Programming/Algorithms#Equal_Ignore_Case
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• Randomization: Increasingly, randomization tech-
niques are important for many applications. This
chapter presents some classical algorithms that
make use of random numbers.

• Backtracking: Almost any problem can be cast in
some form as a backtracking algorithm. In back-
tracking, you consider all possible choices to solve
a problem and recursively solve subproblems under
the assumption that the choice is taken. The set of
recursive calls generates a tree in which each set of
choices in the tree is considered consecutively. Con-
sequently, if a solution exists, it will eventually be
found.
Backtracking is generally an inefficient, brute-force
technique, but there are optimizations that can be
performed to reduce both the depth of the tree and
the number of branches. The technique is called
backtracking because after one leaf of the tree is
visited, the algorithm will go back up the call stack
(undoing choices that didn't lead to success), and
then proceed down some other branch. To be solved
with backtracking techniques, a problem needs to
have some form of “self-similarity,” that is, smaller
instances of the problem (after a choice has been
made) must resemble the original problem. Usually,
problems can be generalized to become self-similar.

• Dynamic Programming: Dynamic programming
is an optimization technique for backtracking al-
gorithms. When subproblems need to be solved
repeatedly (i.e., when there are many duplicate
branches in the backtracking algorithm) time can
be saved by solving all of the subproblems first
(bottom-up, from smallest to largest) and storing the
solution to each subproblem in a table. Thus, each
subproblem is only visited and solved once instead
of repeatedly. The “programming” in this tech-
nique’s name comes from programming in the sense
of writing things down in a table; for example, tele-
vision programming is making a table of what shows
will be broadcast when.

• Greedy Algorithms: A greedy algorithm can be
useful when enough information is known about
possible choices that “the best” choice can be de-
termined without considering all possible choices.
Typically, greedy algorithms are not challenging to
write, but they are difficult to prove correct.

• Hill Climbing: The final technique we explore is
hill climbing. The basic idea is to start with a poor
solution to a problem, and then repeatedly apply op-
timizations to that solution until it becomes optimal
or meets some other requirement. An important
case of hill climbing is network flow. Despite the
name, network flow is useful for many problems that

describe relationships, so it’s not just for computer
networks. Many matching problems can be solved
using network flow.

Top, Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 9, A

1.6 Algorithm and code example

1.6.1 Level 1 (easiest)

1. Find maximum With algorithm and several different
programming languages
2. Find minimum With algorithm and several different
programming languages
3. Find average With algorithm and several different
programming languages
4. Find mode With algorithm and several different pro-
gramming languages
5. Find total With algorithm and several different pro-
gramming languages
6. Counting With algorithm and several different pro-
gramming languages

1.6.2 Level 2

1. Talking to computer Lv 1 With algorithm and several
different programming languages
2. Sorting-bubble sort With algorithm and several differ-
ent programming languages

1.6.3 Level 3

1. Talking to computer Lv 2 With algorithm and several
different programming languages

1.6.4 Level 4

1. Talking to computer Lv 3 With algorithm and several
different programming languages
2. Find approximate maximum With algorithm and sev-
eral different programming languages

1.6.5 Level 5

1. Quicksort
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Chapter 2

Mathematical Background

Top, Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 9, A
Before we begin learning algorithmic techniques, we take
a detour to give ourselves some necessary mathematical
tools. First, we cover mathematical definitions of terms
that are used later on in the book. By expanding your
mathematical vocabulary you can be more precise and
you can state or formulate problems more simply. Fol-
lowing that, we cover techniques for analysing the run-
ning time of an algorithm. After each major algorithm
covered in this book we give an analysis of its running
time as well as a proof of its correctness

2.1 Asymptotic Notation

In addition to correctness another important character-
istic of a useful algorithm is its time and memory con-
sumption. Time and memory are both valuable resources
and there are important differences (even when both are
abundant) in how we can use them.
How can you measure resource consumption? One way
is to create a function that describes the usage in terms
of some characteristic of the input. One commonly used
characteristic of an input dataset is its size. For example,
suppose an algorithm takes an input as an array of n inte-
gers. We can describe the time this algorithm takes as a
function f written in terms of n . For example, we might
write:

f(n) = n2 + 3n+ 14

where the value of f(n) is some unit of time (in this
discussion the main focus will be on time, but we could
do the same for memory consumption). Rarely are the
units of time actually in seconds, because that would de-
pend on the machine itself, the system it’s running, and
its load. Instead, the units of time typically used are in
terms of the number of some fundamental operation per-
formed. For example, some fundamental operations we
might care about are: the number of additions or multi-
plications needed; the number of element comparisons;
the number of memory-location swaps performed; or the
raw number of machine instructions executed. In gen-

eral we might just refer to these fundamental operations
performed as steps taken.
Is this a good approach to determine an algorithm’s re-
source consumption? Yes and no. When two different al-
gorithms are similar in time consumption a precise func-
tion might help to determine which algorithm is faster un-
der given conditions. But in many cases it is either diffi-
cult or impossible to calculate an analytical description of
the exact number of operations needed, especially when
the algorithm performs operations conditionally on the
values of its input. Instead, what really is important is
not the precise time required to complete the function,
but rather the degree that resource consumption changes
depending on its inputs. Concretely, consider these two
functions, representing the computation time required for
each size of input dataset:

f(n) = n3 − 12n2 + 20n+ 110

g(n) = n3 + n2 + 5n+ 5

They look quite different, but how do they behave? Let’s
look at a few plots of the function ( f(n) is in red, g(n)
in blue):
In the first, very-limited plot the curves appear somewhat
different. In the second plot they start going in sort of the
same way, in the third there is only a very small differ-
ence, and at last they are virtually identical. In fact, they
approach n3 , the dominant term. As n gets larger, the
other terms become much less significant in comparison
to n3.
As you can see, modifying a polynomial-time algorithm’s
low-order coefficients doesn't help much. What really
matters is the highest-order coefficient. This is why we've
adopted a notation for this kind of analysis. We say that:

f(n) = n3 − 12n2 + 20n+ 110 = O(n3)

We ignore the low-order terms. We can say that:

O(logn) ≤ O(
√
n) ≤ O(n) ≤ O(n logn) ≤ O(n2) ≤ O(n3) ≤ O(2n)
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This gives us a way to more easily compare algorithms
with each other. Running an insertion sort on n elements
takes steps on the order of O(n2) . Merge sort sorts in
O(n logn) steps. Therefore, once the input dataset is
large enough, merge sort is faster than insertion sort.
In general, we write

f(n) = O(g(n))

when

∃c > 0, ∃n0 > 0, ∀n ≥ n0 : 0 ≤ f(n) ≤ c · g(n).

That is, f(n) = O(g(n)) holds if and only if there exists
some constants c and n0 such that for all n > n0 f(n) is
positive and less than or equal to cg(n) .
Note that the equal sign used in this notation describes a
relationship between f(n) and g(n) instead of reflecting a
true equality. In light of this, some define Big-O in terms
of a set, stating that:

f(n) ∈ O(g(n))

when

f(n) ∈ {f(n) : ∃c > 0, ∃n0 > 0, ∀n ≥ n0 : 0 ≤ f(n) ≤ c·g(n)}.

Big-O notation is only an upper bound; these two are both
true:

n3 = O(n4)

n4 = O(n4)

If we use the equal sign as an equality we can get very
strange results, such as:

n3 = n4

which is obviously nonsense. This is why the set-
definition is handy. You can avoid these things by think-
ing of the equal sign as a one-way equality, i.e.:

n3 = O(n4)

does not imply

O(n4) = n3

Always keep the O on the right hand side.

2.1.1 Big Omega

Sometimes, we want more than an upper bound on the be-
havior of a certain function. Big Omega provides a lower
bound. In general, we say that

f(n) = Ω(g(n))

when

∃c > 0, ∃n0 > 0,∀n ≥ n0 : 0 ≤ c · g(n) ≤ f(n).

i.e. f(n) = Ω(g(n)) if and only if there exist constants c
and n0 such that for all n>n0 f(n) is positive and greater
than or equal to cg(n).
So, for example, we can say that

n2 − 2n = Ω(n2) , (c=1/2, n0=4) or
n2 − 2n = Ω(n) , (c=1, n0=3),

but it is false to claim that

n2 − 2n = Ω(n3).

2.1.2 Big Theta

When a given function is both O(g(n)) and Ω(g(n)), we
say it is Θ(g(n)), and we have a tight bound on the func-
tion. A function f(n) is Θ(g(n)) when

∃c1 > 0, ∃c2 > 0, ∃n0 > 0, ∀n ≥ n0 : 0 ≤ c1·g(n) ≤ f(n) ≤ c2·g(n),

but most of the time, when we're trying to prove that a
given f(n) = Θ(g(n)) , instead of using this definition,
we just show that it is both O(g(n)) and Ω(g(n)).

2.1.3 Little-O and Omega

When the asymptotic bound is not tight, we can express
this by saying that f(n) = o(g(n)) or f(n) = ω(g(n)).
The definitions are:

f(n) is o(g(n)) iff ∀c > 0, ∃n0 > 0, ∀n ≥ n0 :
0 ≤ f(n) < c · g(n) and
f(n) is ω(g(n)) iff ∀c > 0, ∃n0 > 0, ∀n ≥ n0 :
0 ≤ c · g(n) < f(n).

Note that a function f is in o(g(n)) when for any co-
efficient of g, g eventually gets larger than f, while for
O(g(n)), there only has to exist a single coefficient for
which g eventually gets at least as big as f.
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2.1.4 Big-O with multiple variables

Given a functions with two parameters f(n,m) and
g(n,m) ,
f(n,m) = O(g(n,m)) if and only if ∃c > 0, ∃n0 >
0, ∃m0 > 0, ∀n ≥ n0, ∀m ≥ m0 : 0 ≤ f(n,m) ≤
c · g(n,m) .
For example, 5n + 3m = O(n +m) , and n + 10m +
3nm = O(nm) .

2.2 Algorithm Analysis: Solving
Recurrence Equations

Merge sort of n elements: T (n) = 2∗T (n/2)+c(n)This
describes one iteration of the merge sort: the problem
space n is reduced to two halves ( 2 ∗T (n/2) ), and then
merged back together at the end of all the recursive calls
( c(n) ). This notation system is the bread and butter of
algorithm analysis, so get used to it.
There are some theorems you can use to estimate the big
Oh time for a function if its recurrence equation fits a
certain pattern.
[TODO: write this section]

2.2.1 Substitution method

Formulate a guess about the big Oh time of your equation.
Then use proof by induction to prove the guess is correct.
[TODO: write this section]

2.2.2 Summations

[TODO: show the closed forms of commonly needed
summations and prove them]

2.2.3 Draw the Tree and Table

This is really just a way of getting an intelligent guess.
You still have to go back to the substitution method in
order to prove the big Oh time.
[TODO: write this section]

2.2.4 The Master Theorem

Consider a recurrence equation that fits the following for-
mula:

T (n) = aT
(n
b

)
+O(nk)

for a ≥ 1, b > 1 and k ≥ 0. Here, a is the number of re-
cursive calls made per call to the function, n is the input
size, b is how much smaller the input gets, and k is the
polynomial order of an operation that occurs each time
the function is called (except for the base cases). For ex-
ample, in the merge sort algorithm covered later, we have

T (n) = 2T
(n
2

)
+O(n)

because two subproblems are called for each non-base
case iteration, and the size of the array is divided in half
each time. The O(n) at the end is the “conquer” part
of this divide and conquer algorithm: it takes linear time
to merge the results from the two recursive calls into the
final result.
Thinking of the recursive calls of T as forming a tree,
there are three possible cases to determine where most of
the algorithm is spending its time (“most” in this sense is
concerned with its asymptotic behaviour):

1. the tree can be top heavy, and most time is spent
during the initial calls near the root;

2. the tree can have a steady state, where time is
spread evenly; or

3. the tree can be bottom heavy, and most time is
spent in the calls near the leaves

Depending upon which of these three states the tree is in
T will have different complexities:
The Master Theorem

Given T (n) = aT
(
n
b

)
+ O(nk) for a ≥ 1, b > 1 and k

≥ 0:

• If a < bk , then T (n) = O(nk) (top heavy)

• If a = bk , then T (n) = O(nk · logn) (steady state)

• If a > bk , then T (n) = O(nlogb a) (bottom heavy)

For the merge sort example above, where

T (n) = 2T
(n
2

)
+O(n)

we have

a = 2, b = 2, k = 1 =⇒ bk = 2

thus, a = bk and so this is also in the “steady state": By
the master theorem, the complexity of merge sort is thus

T (n) = O(n1 logn) = O(n logn)
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2.3 Amortized Analysis

[Start with an adjacency list representation of a graph
and show two nested for loops: one for each node n, and
nested inside that one loop for each edge e. If there are
n nodes and m edges, this could lead you to say the loop
takes O(nm) time. However, only once could the inner-
loop take that long, and a tighter bound is O(n+m).]
Top, Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 9, A
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Divide and Conquer

Top, Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 9, A
The first major algorithmic technique we cover is divide
and conquer. Part of the trick of making a good di-
vide and conquer algorithm is determining how a given
problem could be separated into two or more similar, but
smaller, subproblems. More generally, when we are cre-
ating a divide and conquer algorithm we will take the fol-
lowing steps:
The first algorithm we'll present using this methodology
is the merge sort.

3.1 Merge Sort

The problem that merge sort solves is general sorting:
given an unordered array of elements that have a total or-
dering, create an array that has the same elements sorted.
More precisely, for an array a with indexes 1 through n,
if the condition

for all i, j such that 1 ≤ i < j ≤ n then a[i] ≤ a[j]

holds, then a is said to be sorted. Here is the interface:
// sort -- returns a sorted copy of array a function
sort(array a): array
Following the divide and conquer methodology, how can
a be broken up into smaller subproblems? Because a is
an array of n elements, we might want to start by break-
ing the array into two arrays of size n/2 elements. These
smaller arrays will also be unsorted and it is meaning-
ful to sort these smaller problems; thus we can consider
these smaller arrays “similar”. Ignoring the base case for
a moment, this reduces the problem into a different one:
Given two sorted arrays, how can they be combined to
form a single sorted array that contains all the elements
of both given arrays:
// merge -- given a and b (assumed to be sorted) returns a
merged array that // preserves order functionmerge(array
a, array b): array
So far, following the methodology has led us to this point,
but what about the base case? The base case is the
part of the algorithm concerned with what happens when

the problem cannot be broken into smaller subproblems.
Here, the base case is when the array only has one ele-
ment. The following is a sorting algorithm that faithfully
sorts arrays of only zero or one elements:
// base-sort -- given an array of one element (or empty), re-
turn a copy of the // array sorted function base-sort(array
a[1..n]): array assert (n <= 1) return a.copy() end
Putting this together, here is what the methodology has
told us to write so far:
// sort -- returns a sorted copy of array a function
sort(array a[1..n]): array if n <= 1: return a.copy() else:
let sub_size := n / 2 let first_half := sort(a[1,..,sub_size])
let second_half := sort(a[sub_size + 1,..,n]) return
merge(first_half, second_half) fi end
And, other than the unimplemented merge subroutine,
this sorting algorithm is done! Before we cover how this
algorithm works, here is how merge can be written:
// merge -- given a and b (assumed to be sorted) returns a
merged array that // preserves order functionmerge(array
a[1..n], array b[1..m]): array let result := new array[n +
m] let i, j := 1 for k := 1 to n + m: if i >= n: result[k] :=
b[j]; j += 1 else-if j >= m: result[k] := a[i]; i += 1 else: if
a[i] < b[j]: result[k] := a[i]; i += 1 else: result[k] := b[j];
j += 1 fi fi repeat end
[TODO: how it works; including correctness proof] This
algorithm uses the fact that, given two sorted arrays, the
smallest element is always in one of two places. It’s either
at the head of the first array, or the head of the second.

3.1.1 Analysis

Let T (n) be the number of steps the algorithm takes to
run on input of size n .
Merging takes linear time and we recurse each time on
two sub-problems of half the original size, so

T (n) = 2 · T
(n
2

)
+O(n).

By the master theorem, we see that this recurrence has a
“steady state” tree. Thus, the runtime is:

9

https://en.wikibooks.org/wiki/Algorithms
https://en.wikibooks.org/wiki/Algorithms/Introduction
https://en.wikibooks.org/wiki/Algorithms/Mathematical_Background
https://en.wikibooks.org/wiki/Algorithms/Divide_and_Conquer
https://en.wikibooks.org/wiki/Algorithms/Randomization
https://en.wikibooks.org/wiki/Algorithms/Backtracking
https://en.wikibooks.org/wiki/Algorithms/Dynamic_Programming
https://en.wikibooks.org/wiki/Algorithms/Greedy_Algorithms
https://en.wikibooks.org/wiki/Algorithms/Hill_Climbing
https://en.wikibooks.org/wiki/Algorithms/Unweighted_Graph_Algorithms
https://en.wikibooks.org/wiki/Algorithms/Ada_Implementation


10 CHAPTER 3. DIVIDE AND CONQUER

T (n) = O(n · logn).

This can be seen intuitivey by asking how may times does
n need to be divided by 2 before the size of the array for
sorting is 1? Why m times of course !
More directly, 2m = n , equivalent to log 2m = log n, equiv-
alent to m x log22 = log 2 n , and since log2 2 = 1, equiv-
alent to m = log2n.
Since m is the number of halvings of an array before the
array is chopped up into bite sized pieces of 1-element
arrays, and then it will take m levels of merging a sub-
array with its neighbor where the sum size of sub-arrays
will be n at each level, it will be exactly n/2 comparisons
for merging at each level, with m ( log2n ) levels, thus
O(n/2 x log n ) <=> O ( n log n).

3.1.2 Iterative Version

This merge sort algorithm can be turned into an iterative
algorithm by iteratively merging each subsequent pair,
then each group of four, et cetera. Due to a lack of
function overhead, iterative algorithms tend to be faster
in practice. However, because the recursive version’s call
tree is logarithmically deep, it does not require much run-
time stack space: Even sorting 4 gigs of items would only
require 32 call entries on the stack, a very modest amount
considering if even each call required 256 bytes on the
stack, it would only require 8 kilobytes.
The iterative version of mergesort is a minor modification
to the recursive version - in fact we can reuse the earlier
merging function. The algorithmworks bymerging small,
sorted subsections of the original array to create larger
subsections of the array which are sorted. To accomplish
this, we iterate through the array with successively larger
“strides”.
// sort -- returns a sorted copy of array a function
sort_iterative(array a[1..n]): array let result := a.copy()
for power := 0 to log2(n−1) let unit := 2^power
for i := 1 to n by unit*2 if i+unit−1 < n: let
a1[1..unit] := result[i..i+unit−1] let a2[1..unit] := re-
sult[i+unit..min(i+unit*2-1, n)] result[i..i+unit*2-1] :=
merge(a1,a2) fi repeat repeat return result end
This works because each sublist of length 1 in the array
is, by definition, sorted. Each iteration through the array
(using counting variable i) doubles the size of sorted sub-
lists by merging adjacent sublists into sorted larger ver-
sions. The current size of sorted sublists in the algorithm
is represented by the unit variable.

3.1.3 space inefficiency

Straight forward merge sort requires a space of 2 x n ,
n to store the 2 sorted smaller arrays , and n to store the

final result of merging. But merge sort still lends itself for
batching of merging.

3.2 Binary Search

Once an array is sorted, we can quickly locate items in
the array by doing a binary search. Binary search is dif-
ferent from other divide and conquer algorithms in that it
is mostly divide based (nothing needs to be conquered).
The concept behind binary search will be useful for un-
derstanding the partition and quicksort algorithms, pre-
sented in the randomization chapter.
Finding an item in an already sorted array is similar to
finding a name in a phonebook: you can start by flipping
the book open toward the middle. If the name you're
looking for is on that page, you stop. If you went too
far, you can start the process again with the first half of
the book. If the name you're searching for appears later
than the page, you start from the second half of the book
instead. You repeat this process, narrowing down your
search space by half each time, until you find what you
were looking for (or, alternatively, find where what you
were looking for would have been if it were present).
The following algorithm states this procedure precisely:
// binary-search -- returns the index of value in the given
array, or //−1 if value cannot be found. Assumes array is
sorted in ascending order function binary-search(value,
array A[1..n]): integer return search-inner(value, A, 1,
n + 1) end // search-inner -- search subparts of the ar-
ray; end is one past the // last element function search-
inner(value, array A, start, end): integer if start == end:
return −1 // not found fi let length := end - start if length
== 1: if value == A[start]: return start else: return −1 fi
fi let mid := start + (length / 2) if value == A[mid]: return
mid else-if value > A[mid]: return search-inner(value,
A,mid + 1, end) else: return search-inner(value,A, start,
mid) fi end
Note that all recursive calls made are tail-calls, and thus
the algorithm is iterative. We can explicitly remove the
tail-calls if our programming language does not do that
for us already by turning the argument values passed to
the recursive call into assignments, and then looping to
the top of the function body again:
// binary-search -- returns the index of value in the given
array, or //−1 if value cannot be found. Assumes array is
sorted in ascending order function binary-search(value,
array A[1,..n]): integer let start := 1 let end := n + 1 loop:
if start == end: return−1 fi // not found let length := end -
start if length == 1: if value == A[start]: return start else:
return −1 fi fi let mid := start + (length / 2) if value ==
A[mid]: return mid else-if value > A[mid]: start := mid +
1 else: end := mid fi repeat end
Even though we have an iterative algorithm, it’s easier to
reason about the recursive version. If the number of steps
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the algorithm takes is T (n) , then we have the following
recurrence that defines T (n) :

T (n) = 1 · T
(n
2

)
+O(1).

The size of each recursive call made is on half of the input
size (n ), and there is a constant amount of time spent out-
side of the recursion (i.e., computing length and mid will
take the same amount of time, regardless of how many
elements are in the array). By the master theorem, this
recurrence has values a = 1, b = 2, k = 0 , which is a
“steady state” tree, and thus we use the steady state case
that tells us that

T (n) = Θ(nk · logn) = Θ(logn).

Thus, this algorithm takes logarithmic time. Typically,
even when n is large, it is safe to let the stack grow by
logn activation records through recursive calls.

difficulty in initially correct binary search implemen-
tations

The article on wikipedia on Binary Search also mentions
the difficulty in writing a correct binary search algorithm:
for instance, the java Arrays.binarySearch(..) overloaded
function implementation does an interative binary search
which didn't work when large integers overflowed a sim-
ple expression of mid calculation mid = ( end + start) / 2
i.e. end + start > max_positive_integer . Hence the above
algorithm is more correct in using a length = end - start,
and adding half length to start. The java binary Search
algorithm gave a return value useful for finding the po-
sition of the nearest key greater than the search key, i.e.
the position where the search key could be inserted.
i.e. it returns - (keypos+1) , if the search key wasn't found
exactly, but an insertion point was needed for the search
key ( insertion_point = -return_value - 1). Looking at
boundary values, an insertion point could be at the front
of the list ( ip = 0, return value = −1 ), to the position
just after the last element, ( ip = length(A), return value
= - length(A) - 1) .
As an exercise, trying to implement this functionality on
the above iterative binary search can be useful for further
comprehension.

3.3 Integer Multiplication

If you want to perform arithmetic with small integers, you
can simply use the built-in arithmetic hardware of your
machine. However, if you wish to multiply integers larger
than those that will fit into the standard “word” integer

size of your computer, you will have to implement a mul-
tiplication algorithm in software or use a software imple-
mentation written by someone else. For example, RSA
encryption needs to work with integers of very large size
(that is, large relative to the 64-bit word size of many ma-
chines) and utilizes special multiplication algorithms.[1]

3.3.1 Grade School Multiplication

How do we represent a large, multi-word integer? We
can have a binary representation by using an array (or an
allocated block of memory) of words to represent the bits
of the large integer. Suppose now that we have two inte-
gers, X and Y , and we want to multiply them together.
For simplicity, let’s assume that bothX and Y have n bits
each (if one is shorter than the other, we can always pad
on zeros at the beginning). The most basic way to multi-
ply the integers is to use the grade school multiplication
algorithm. This is even easier in binary, because we only
multiply by 1 or 0:
x6 x5 x4 x3 x2 x1 x0 × y6 y5 y4 y3 y2 y1 y0 --------------
--------- x6 x5 x4 x3 x2 x1 x0 (when y0 is 1; 0 otherwise)
x6 x5 x4 x3 x2 x1 x0 0 (when y1 is 1; 0 otherwise) x6 x5
x4 x3 x2 x1 x0 0 0 (when y2 is 1; 0 otherwise) x6 x5 x4
x3 x2 x1 x0 0 0 0 (when y3 is 1; 0 otherwise) ... et cetera
As an algorithm, here’s what multiplication would look
like:
// multiply -- return the product of two binary integers, both
of length n function multiply(bitarray x[1,..n], bitarray
y[1,..n]): bitarray bitarray p = 0 for i:=1 to n: if y[i] ==
1: p := add(p, x) fi x := pad(x, 0) // add another zero to
the end of x repeat return p end
The subroutine add adds two binary integers and returns
the result, and the subroutine pad adds an extra digit to
the end of the number (padding on a zero is the same
thing as shifting the number to the left; which is the same
as multiplying it by two). Here, we loop n times, and in
the worst-case, we make n calls to add. The numbers
given to add will at most be of length 2n . Further, we
can expect that the add subroutine can be done in linear
time. Thus, if n calls to aO(n) subroutine are made, then
the algorithm takes O(n2) time.

3.3.2 Divide and Conquer Multiplication

As you may have figured, this isn't the end of the story.
We've presented the “obvious” algorithm for multiplica-
tion; so let’s see if a divide and conquer strategy can give
us something better. One route we might want to try is
breaking the integers up into two parts. For example, the
integer x could be divided into two parts, xh and xl , for
the high-order and low-order halves of x . For example,
if x has n bits, we have

https://en.wikibooks.org/wiki/Boundary_values
https://en.wikibooks.org/wiki/Algorithms/Divide_and_Conquer#cite_note-1
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x = xh · 2n/2 + xl

We could do the same for y :

y = yh · 2n/2 + yl

But from this division into smaller parts, it’s not clear how
we can multiply these parts such that we can combine the
results for the solution to the main problem. First, let’s
write out x× y would be in such a system:

x×y = xh×yh·(2n/2)2+(xh×yl+xl×yh)·(2n/2)+xl×yl

This comes from simply multiplying the new hi/lo repre-
sentations of x and y together. The multiplication of the
smaller pieces are marked by the "× " symbol. Note that
the multiplies by 2n/2 and (2n/2)2 = 2n does not require
a real multiplication: we can just pad on the right number
of zeros instead. This suggests the following divide and
conquer algorithm:
// multiply -- return the product of two binary integers, both
of length n function multiply(bitarray x[1,..n], bitarray
y[1,..n]): bitarray if n == 1: return x[1] * y[1] fi // mul-
tiply single digits: O(1) let xh := x[n/2 + 1, .., n] // array
slicing, O(n) let xl := x[0, .., n / 2] // array slicing, O(n) let
yh := y[n/2 + 1, .., n] // array slicing, O(n) let yl := y[0,
.., n / 2] // array slicing, O(n) let a := multiply(xh, yh)
// recursive call; T(n/2) let b := multiply(xh, yl) // recur-
sive call; T(n/2) let c := multiply(xl, yh) // recursive call;
T(n/2) let d := multiply(xl, yl) // recursive call; T(n/2) b
:= add(b, c) // regular addition; O(n) a := shift(a, n) //
pad on zeros; O(n) b := shift(b, n/2) // pad on zeros; O(n)
return add(a, b, d) // regular addition; O(n) end
We can use the master theorem to analyze the running
time of this algorithm. Assuming that the algorithm’s
running time is T (n) , the comments show how much
time each step takes. Because there are four recursive
calls, each with an input of size n/2 , we have:

T (n) = 4T (n/2) +O(n)

Here, a = 4, b = 2, k = 1 , and given that 4 > 21 we
are in the “bottom heavy” case and thus plugging in these
values into the bottom heavy case of the master theorem
gives us:

T (n) = O(nlog2 4) = O(n2).

Thus, after all of that hard work, we're still no better off
than the grade school algorithm! Luckily, numbers and
polynomials are a data set we know additional informa-
tion about. In fact, we can reduce the running time by
doing some mathematical tricks.

First, let’s replace the 2n/2 with a variable, z:

x× y = xh ∗ yhz2 + (xh ∗ yl + xl ∗ yh)z + xl ∗ yl

This appears to be a quadratic formula, and we know that
you only need three co-efficients or points on a graph in
order to uniquely describe a quadratic formula. However,
in our above algorithm we've been using four multiplica-
tions total. Let’s try recasting x and y as linear functions:

Px(z) = xh · z + xl

Py(z) = yh · z + yl

Now, for x× y we just need to compute (Px ·Py)(2
n/2)

. We'll evaluate Px(z) and Py(z) at three points. Three
convenient points to evaluate the function will be at (Px ·
Py)(1), (Px · Py)(0), (Px · Py)(−1) :
[TODO: show how to make the two-parts breaking more
efficient; then mention that the best multiplication uses
the FFT, but don't actually cover that topic (which is saved
for the advanced book)]

3.4 Base Conversion

[TODO:Convert numbers from decimal to binary quickly
using DnC.]
Along with the binary, the science of computers employs
bases 8 and 16 for it’s very easy to convert between the
three while using bases 8 and 16 shortens considerably
number representations.
To represent 8 first digits in the binary system we need
3 bits. Thus we have, 0=000, 1=001, 2=010, 3=011,
4=100, 5=101, 6=110, 7=111. Assume M=(2065)8. In
order to obtain its binary representation, replace each of
the four digits with the corresponding triple of bits: 010
000 110 101. After removing the leading zeros, binary
representation is immediate: M=(10000110101)2. (For
the hexadecimal system conversion is quite similar, ex-
cept that now one should use 4-bit representation of num-
bers below 16.) This fact follows from the general con-
version algorithm and the observation that 8= 23 (and, of
course, 16= 24 ). Thus it appears that the shortest way
to convert numbers into the binary system is to first con-
vert them into either octal or hexadecimal representation.
Now let see how to implement the general algorithm pro-
grammatically.
For the sake of reference, representation of a number in a
system with base (radix) N may only consist of digits that
are less than N.
More accurately, if

(1)M = akN
k + ak−1N

k−1 + ...+ a1N
1 + a0
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with 0 <= ai < N we have a representation of M in
base N system and write

M = (akak−1...a0)N

If we rewrite (1) as

(2)M = a0 +N ∗ (a1 +N ∗ (a2 +N ∗ ...))

the algorithm for obtaining coefficients ai becomes more
obvious. For example, a0 = M modulo n and a1 =
(M/N)modulo n , and so on.

3.4.1 Recursive Implementation

Let’s represent the algorithm mnemonically: (result is a
string or character variable where I shall accumulate the
digits of the result one at a time)
result = "" if M < N, result = 'M' + result. Stop. S = M
mod N, result = 'S' + result M = M/N goto 2
A few words of explanation.
"" is an empty string. You may remember it’s a zero el-
ement for string concatenation. Here we check whether
the conversion procedure is over. It’s over if M is less
than N in which case M is a digit (with some qualifica-
tion for N>10) and no additional action is necessary. Just
prepend it in front of all other digits obtained previously.
The '+' plus sign stands for the string concatenation. If
we got this far, M is not less than N. First we extract its
remainder of division by N, prepend this digit to the re-
sult as described previously, and reassign M to be M/N.
This says that the whole process should be repeated start-
ing with step 2. I would like to have a function say called
Conversion that takes two argumentsM andN and returns
representation of the number M in base N. The function
might look like this
1 String Conversion(int M, int N) // return string, accept
two integers 2 { 3 if (M < N) // see if it’s time to return 4
return new String(""+M); // ""+M makes a string out of
a digit 5 else // the time is not yet ripe 6 return Conver-
sion(M/N, N) + new String(""+(M mod N)); // continue
7 }
This is virtually a working Java function and it would look
verymuch the same in C++ and require only a slight mod-
ification for C. As you see, at some point the function calls
itself with a different first argument. One may say that the
function is defined in terms of itself. Such functions are
called recursive. (The best known recursive function is
factorial: n!=n*(n-1)!.) The function calls (applies) itself
to its arguments, and then (naturally) applies itself to its
new arguments, and then ... and so on. We can be sure
that the process will eventually stop because the sequence
of arguments (the first ones) is decreasing. Thus sooner
or later the first argument will be less than the second and

the process will start emerging from the recursion, still a
step at a time.

3.4.2 Iterative Implementation

Not all programming languages allow functions to call
themselves recursively. Recursive functions may also be
undesirable if process interruption might be expected for
whatever reason. For example, in the Tower of Hanoi
puzzle, the user may want to interrupt the demonstration
being eager to test his or her understanding of the solu-
tion. There are complications due to the manner in which
computers execute programs when one wishes to jump
out of several levels of recursive calls.
Note however that the string produced by the conversion
algorithm is obtained in the wrong order: all digits are
computed first and then written into the string the last
digit first. Recursive implementation easily got around
this difficulty. With each invocation of the Conversion
function, computer creates a new environment in which
passed values of M, N, and the newly computed S are
stored. Completing the function call, i.e. returning from
the function we find the environment as it was before the
call. Recursive functions store a sequence of computa-
tions implicitly. Eliminating recursive calls implies that
we must manage to store the computed digits explicitly
and then retrieve them in the reversed order.
In Computer Science such a mechanism is known as
LIFO - Last In First Out. It’s best implemented with a
stack data structure. Stack admits only two operations:
push and pop. Intuitively stack can be visualized as in-
deed a stack of objects. Objects are stacked on top of
each other so that to retrieve an object one has to remove
all the objects above the needed one. Obviously the only
object available for immediate removal is the top one, i.e.
the one that got on the stack last.
Then iterative implementation of the Conversion function
might look as the following.
1 String Conversion(int M, int N) // return string, accept
two integers 2 { 3 Stack stack = new Stack(); // create a
stack 4while (M>=N) // now the repetitive loop is clearly
seen 5 { 6 stack.push(M mod N); // store a digit 7 M =
M/N; // find new M 8 } 9 // now it’s time to collect the
digits together 10 String str = new String(""+M); // create
a string with a single digitM 11while (stack.NotEmpty())
12 str = str+stack.pop() // get from the stack next digit 13
return str; 14 }
The function is by far longer than its recursive counter-
part; but, as I said, sometimes it’s the one you want to use,
and sometimes it’s the only one you may actually use.
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3.5 Closest Pair of Points

For a set of points on a two-dimensional plane, if you
want to find the closest two points, you could compare all
of them to each other, atO(n2) time, or use a divide and
conquer algorithm.
[TODO: explain the algorithm, and show the n^2 algo-
rithm]
[TODO: write the algorithm, include intuition, proof of
correctness, and runtime analysis]
Use this link for the original document.
http://www.cs.mcgill.ca/~{}cs251/ClosestPair/
ClosestPairDQ.html

3.6 Closest Pair: A Divide-and-
Conquer Approach

3.6.1 Introduction

The brute force approach to the closest pair problem (i.e.
checking every possible pair of points) takes quadratic
time. We would now like to introduce a faster divide-
and-conquer algorithm for solving the closest pair prob-
lem. Given a set of points in the plane S, our approach
will be to split the set into two roughly equal halves (S1
and S2) for which we already have the solutions, and then
to merge the halves in linear time to yield an O(nlogn)
algorithm. However, the actual solution is far from ob-
vious. It is possible that the desired pair might have one
point in S1 and one in S2, does this not force us once
again to check all possible pairs of points? The divide-
and-conquer approach presented here generalizes directly
from the one dimensional algorithm we presented in the
previous section.

3.6.2 Closest Pair in the Plane

Alright, we'll generalize our 1-D algorithm as directly as
possible (see figure 3.2). Given a set of points S in the
plane, we partition it into two subsets S1 and S2 by a ver-
tical line l such that the points in S1 are to the left of l and
those in S2 are to the right of l.
We now recursively solve the problem on these two sets
obtaining minimum distances of d1 (for S1), and d2 (for
S2). We let d be the minimum of these.
Now, identical to the 1-D case, if the closes pair of the
whole set consists of one point from each subset, then
these two points must be within d of l. This area is rep-
resented as the two strips P1 and P2 on either side of l
Up to now, we are completely in step with the 1-D case.
At this point, however, the extra dimension causes some
problems. We wish to determine if some point in say P1

is less than d away from another point in P2. However,
in the plane, we don't have the luxury that we had on the
line when we observed that only one point in each set can
be within d of the median. In fact, in two dimensions,
all of the points could be in the strip! This is disastrous,
because we would have to compare n2 pairs of points to
merge the set, and hence our divide-and-conquer algo-
rithm wouldn't save us anything in terms of efficiency.
Thankfully, we can make another life saving observation
at this point. For any particular point p in one strip, only
points that meet the following constraints in the other
strip need to be checked:

• those points within d of p in the direction of the
other strip

• those within d of p in the positive and negative y
directions

Simply because points outside of this bounding box can-
not be less than d units from p (see figure 3.3). It just so
happens that because every point in this box is at least d
apart, there can be at most six points within it.
Now we don't need to check all n2 points. All we have
to do is sort the points in the strip by their y-coordinates
and scan the points in order, checking each point against
a maximum of 6 of its neighbors. This means at most 6*n
comparisons are required to check all candidate pairs.
However, since we sorted the points in the strip by their y-
coordinates the process of merging our two subsets is not
linear, but in fact takes O(nlogn) time. Hence our full al-
gorithm is not yet O(nlogn), but it is still an improvement
on the quadratic performance of the brute force approach
(as we shall see in the next section). In section 3.4, we
will demonstrate how to make this algorithm even more
efficient by strengthening our recursive sub-solution.

3.6.3 Summary and Analysis of the 2-D
Algorithm

We present here a step by step summary of the algo-
rithm presented in the previous section, followed by a
performance analysis. The algorithm is simply written
in list form because I find pseudo-code to be burdensome
and unnecessary when trying to understand an algorithm.
Note that we pre-sort the points according to their x co-
ordinates, and maintain another structure which holds the
points sorted by their y values(for step 4), which in itself
takes O(nlogn) time.
ClosestPair of a set of points:

1. Divide the set into two equal sized parts by the line
l, and recursively compute the minimal distance in
each part.

2. Let d be the minimal of the two minimal distances.

http://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairDQ.html
http://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairDQ.html
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3. Eliminate points that lie farther than d apart from l.

4. Consider the remaining points according to their y-
coordinates, which we have precomputed.

5. Scan the remaining points in the y order and com-
pute the distances of each point to all of its neigh-
bors that are distanced no more than d(that’s why
we need it sorted according to y). Note that there
are no more than 5(there is no figure 3.3 , so this 5
or 6 doesnt make sense without that figure . Please
include it .) such points(see previous section).

6. If any of these distances is less than d then update d.

Analysis:

• Let us note T(n) as the efficiency of out algorithm

• Step 1 takes 2T(n/2) (we apply our algorithm for
both halves)

• Step 3 takes O(n) time

• Step 5 takes O(n) time (as we saw in the previous
section)

so,
T (n) = 2T (n/2) +O(n)

which, according the Master Theorem, result
T (n) ∈ O(nlogn)

Hence the merging of the sub-solutions is dominated by
the sorting at step 4, and hence takes O(nlogn) time.
This must be repeated once for each level of recursion in
the divide-and-conquer algorithm,
hence the whole of algorithm ClosestPair takes
O(logn*nlogn) = O(nlog2n) time.

3.6.4 Improving the Algorithm

We can improve on this algorithm slightly by reducing the
time it takes to achieve the y-coordinate sorting in Step
4. This is done by asking that the recursive solution com-
puted in Step 1 returns the points in sorted order by their
y coordinates. This will yield two sorted lists of points
which need only be merged (a linear time operation) in
Step 4 in order to yield a complete sorted list. Hence the
revised algorithm involves making the following changes:
Step 1: Divide the set into..., and recursively compute
the distance in each part, returning the points in each
set in sorted order by y-coordinate. Step 4: Merge the
two sorted lists into one sorted list in O(n) time. Hence
the merging process is now dominated by the linear time
steps thereby yielding an O(nlogn) algorithm for finding
the closest pair of a set of points in the plane.

3.7 Towers Of Hanoi Problem

[TODO: Write about the towers of hanoi algorithm and a
program for it]
There are n distinct sized discs and three pegs such that
discs are placed at the left peg in the order of their sizes.
The smallest one is at the top while the largest one is at
the bottom. This game is to move all the discs from the
left peg

3.7.1 Rules

1) Only one disc can be moved in each step.
2) Only the disc at the top can be moved.
3) Any disc can only be placed on the top of a larger disc.

3.7.2 Solution

Intuitive Idea

In order to move the largest disc from the left peg to the
middle peg, the smallest discs must be moved to the right
peg first. After the largest one is moved. The smaller
discs are then moved from the right peg to the middle
peg.

Recurrence

Suppose n is the number of discs.
To move n discs from peg a to peg b,
1) If n>1 then move n-1 discs from peg a to peg c
2) Move n-th disc from peg a to peg b
3) If n>1 then move n-1 discs from peg c to peg a

Pseudocode

void hanoi(n,src,dst){ if (n>1) hanoi(n-1,src,pegs-
{src,dst}); print “move n-th disc from src to dst"; if
(n>1) hanoi(n-1,pegs-{src,dst},dst); }

Analysis

The analysis is trivial. T (n) = 2T (n − 1) + O(1) =
O(2n)

3.8 Footnotes

[1] A (mathematical) integer larger than the largest “int” di-
rectly supported by your computer’s hardware is often
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called a “BigInt”. Working with such large numbers is of-
ten called “multiple precision arithmetic”. There are en-
tire books on the various algorithms for dealing with such
numbers, such as:

• Modern Computer Arithmetic, Richard Brent and
Paul Zimmermann, Cambridge University Press,
2010.

• Donald E. Knuth, The Art of Computer Program-
ming , Volume 2: Seminumerical Algorithms (3rd
edition), 1997.

People who implement such algorithms may

• write a one-off implementation for one particular
application

• write a library that you can use for many applica-
tions, such as GMP, the GNU Multiple Precision
Arithmetic Library or McCutchen’s Big Integer Li-
brary or various libraries used to demonstrate
RSA encryption

• put those algorithms in the compiler of a program-
ming language that you can use (such as Python and
Lisp) that automatically switches from standard in-
tegers to BigInts when necessary

Top, Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 9, A

http://www.loria.fr/~zimmerma/mca/pub226.html
http://gmplib.org/
http://gmplib.org/
https://mattmccutchen.net/bigint/
https://mattmccutchen.net/bigint/
https://en.wikibooks.org/wiki/Algorithms
https://en.wikibooks.org/wiki/Algorithms/Introduction
https://en.wikibooks.org/wiki/Algorithms/Mathematical_Background
https://en.wikibooks.org/wiki/Algorithms/Divide_and_Conquer
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Chapter 4

Randomization

Top, Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 9, A
As deterministic algorithms are driven to their limits
when one tries to solve hard problems with them, a use-
ful technique to speed up the computation is randomiza-
tion. In randomized algorithms, the algorithm has access
to a random source, which can be imagined as tossing
coins during the computation. Depending on the outcome
of the toss, the algorithm may split up its computation
path.
There are two main types of randomized algorithms: Las
Vegas algorithms and Monte-Carlo algorithms. In Las
Vegas algorithms, the algorithm may use the randomness
to speed up the computation, but the algorithm must al-
ways return the correct answer to the input. Monte-Carlo
algorithms do not have the former restriction, that is, they
are allowed to givewrong return values. However, return-
ing a wrong return value must have a small probability,
otherwise that Monte-Carlo algorithm would not be of
any use.
Many approximation algorithms use randomization.

4.1 Ordered Statistics

Before covering randomized techniques, we'll start with a
deterministic problem that leads to a problem that utilizes
randomization. Suppose you have an unsorted array of
values and you want to find

• the maximum value,

• the minimum value, and

• the median value.

In the immortal words of one of our former computer
science professors, “How can you do?"

4.1.1 find-max

First, it’s relatively straightforward to find the largest ele-
ment:

// find-max -- returns the maximum element function find-
max(array vals[1..n]): element let result := vals[1] for i
from 2 to n: result := max(result, vals[i]) repeat return
result end
An initial assignment of−∞ to result would work as well,
but this is a useless call to the max function since the first
element compared gets set to result. By initializing re-
sult as such the function only requires n-1 comparisons.
(Moreover, in languages capable of metaprogramming,
the data type may not be strictly numerical and there
might be no good way of assigning −∞ ; using vals[1]
is type-safe.)
A similar routine to find the minimum element can be
done by calling the min function instead of the max func-
tion.

4.1.2 find-min-max

But now suppose you want to find the min and the max at
the same time; here’s one solution:
// find-min-max -- returns the minimum and maximum el-
ement of the given array function find-min-max(array
vals): pair return pair {find-min(vals), find-max(vals)}
end
Because find-max and find-min both make n-1 calls to
the max or min functions (when vals has n elements), the
total number of comparisons made in find-min-max is
2n− 2 .
However, some redundant comparisons are being made.
These redundancies can be removed by “weaving” to-
gether the min and max functions:
// find-min-max -- returns the minimum and maximum el-
ement of the given array function find-min-max(array
vals[1..n]): pair let min :=∞ let max := −∞ if n is odd:
min := max := vals[1] vals := vals[2,..,n] // we can now
assume n is even n := n - 1 fi for i:=1 to n by 2: // con-
sider pairs of values in vals if vals[i] < vals[i + 1]: let a
:= vals[i] let b := vals[i + 1] else: let a := vals[i + 1] let b
:= vals[i] // invariant: a <= b fi if a < min: min := a fi if
b > max: max := b fi repeat return pair {min, max} end
Here, we only loop n/2 times instead of n times, but
for each iteration we make three comparisons. Thus, the
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number of comparisons made is (3/2)n = 1.5n , result-
ing in a 3/4 speed up over the original algorithm.
Only three comparisons need to be made instead of four
because, by construction, it’s always the case that a ≤ b
. (In the first part of the “if”, we actually know more
specifically that a < b , but under the else part, we can
only conclude that a ≤ b .) This property is utilized by
noting that a doesn't need to be compared with the current
maximum, because b is already greater than or equal to
a, and similarly, b doesn't need to be compared with the
current minimum, because a is already less than or equal
to b.
In software engineering, there is a struggle between us-
ing libraries versus writing customized algorithms. In this
case, the min and max functions weren't used in order to
get a faster find-min-max routine. Such an operation
would probably not be the bottleneck in a real-life pro-
gram: however, if testing reveals the routine should be
faster, such an approach should be taken. Typically, the
solution that reuses libraries is better overall than writ-
ing customized solutions. Techniques such as open im-
plementation and aspect-oriented programming may help
manage this contention to get the best of both worlds, but
regardless it’s a useful distinction to recognize.

4.1.3 find-median

Finally, we need to consider how to find themedian value.
One approach is to sort the array then extract the median
from the position vals[n/2]:
// find-median -- returns the median element of vals func-
tion find-median(array vals[1..n]): element assert (n >
0) sort(vals) return vals[n / 2] end
If our values are not numbers close enough in value (or
otherwise cannot be sorted by a radix sort) the sort above
is going to require O(n logn) steps.
However, it is possible to extract the nth-ordered statistic
in O(n) time. The key is eliminating the sort: we don't
actually require the entire array to be sorted in order to
find the median, so there is some waste in sorting the en-
tire array first. One technique we'll use to accomplish this
is randomness.
Before presenting a non-sorting find-median function,
we introduce a divide and conquer-style operation known
as partitioning. What we want is a routine that finds a
random element in the array and then partitions the array
into three parts:

1. elements that are less than or equal to the random
element;

2. elements that are equal to the random element; and

3. elements that are greater than or equal to the random
element.

These three sections are denoted by two integers: j and i.
The partitioning is performed “in place” in the array:
// partition -- break the array three partitions based on a
randomly picked element function partition(array vals):
pair{j, i}
Note that when the random element picked is actually
represented three or more times in the array it’s possible
for entries in all three partitions to have the same value
as the random element. While this operation may not
sound very useful, it has a powerful property that can be
exploited: When the partition operation completes, the
randomly picked element will be in the same position in
the array as it would be if the array were fully sorted!
This property might not sound so powerful, but recall the
optimization for the find-min-max function: we noticed
that by picking elements from the array in pairs and com-
paring them to each other first we could reduce the total
number of comparisons needed (because the current min
and max values need to be compared with only one value
each, and not two). A similar concept is used here.
While the code for partition is not magical, it has some
tricky boundary cases:
// partition -- break the array into three ordered partitions
from a random element function partition(array vals):
pair{j, i} let m := 0 let n := vals.length - 2 // for an array
vals, vals[vals.length-1] is the last element, which holds
the partition, // so the last sort element is vals[vals.length-
2] let irand := random(m, n) // returns any value from
m to n let x := vals[irand] swap( irand,n+ 1 ) // n+1 =
vals.length-1 , which is the right most element, and acts
as store for partition element and sentinel for m // values
in vals[n..] are greater than x // values in vals[0..m] are
less than x while (m <= n ) // see explanation in quick sort
why should be m <= n instead of m < n in the 2 element
case, // vals.length −2 = 0 = n = m, but if the 2-element
case is out-of-order vs. in-order, there must be a differ-
ent action. // by implication, the different action occurs
within this loop, so must process the m = n case before
exiting. while vals[m] <= x // in the 2-element case, sec-
ond element is partition, first element at m. If in-order,
m will increment m++ endwhile while x < vals[n] && n
> 0 // stops if vals[n] belongs in left partition or hits start
of array n-- endwhile if ( m >= n) break; swap(m,n) // ex-
change vals[n] and vals[m] m++ // don't rescan swapped
elements n-- endwhile // partition: [0..m−1] [] [n+1..]
note that m=n+1 // if you need non empty sub-arrays:
swap(m,vals.length - 1) // put the partition element in the
between left and right partitions // in 2-element out-of-
order case, m=0 (not incremented in loop), and the first
and last(second) element will swap. // partition: [0..n−1]
[n..n] [n+1..] end
We can use partition as a subroutine for a general find
operation:
// find -- moves elements in vals such that location k holds
the value it would when sorted function find(array vals,
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integer k) assert (0 <= k < vals.length) // k it must be a
valid index if vals.length <= 1: return fi let pair (j, i) :=
partition(vals) if k <= i: find(a[0,..,i], k) else-if j <= k:
find(a[j,..,n], k - j) fi TODO: debug this! end
Which leads us to the punch-line:
// find-median -- returns the median element of vals func-
tion find-median(array vals): element assert (vals.length
> 0) let median_index := vals.length / 2; find(vals, me-
dian_index) return vals[median_index] end
One consideration that might cross your mind is “is the
random call really necessary?" For example, instead of
picking a random pivot, we could always pick the mid-
dle element instead. Given that our algorithm works with
all possible arrays, we could conclude that the running
time on average for all of the possible inputs is the same
as our analysis that used the random function. The rea-
soning here is that under the set of all possible arrays, the
middle element is going to be just as “random” as picking
anything else. But there’s a pitfall in this reasoning: Typi-
cally, the input to an algorithm in a program isn't random
at all. For example, the input has a higher probability
of being sorted than just by chance alone. Likewise, be-
cause it is real data from real programs, the data might
have other patterns in it that could lead to suboptimal re-
sults.
To put this another way: for the randomized median find-
ing algorithm, there is a very small probability it will run
suboptimally, independent of what the input is; while for
a deterministic algorithm that just picks the middle ele-
ment, there is a greater chance it will run poorly on some
of the most frequent input types it will receive. This leads
us to the following guideline:
Note that there are “derandomization” techniques that
can take an average-case fast algorithm and turn it into
a fully deterministic algorithm. Sometimes the overhead
of derandomization is so much that it requires very large
datasets to get any gains. Nevertheless, derandomization
in itself has theoretical value.
The randomized find algorithm was invented by C. A.
R. “Tony” Hoare. While Hoare is an important figure
in computer science, he may be best known in general
circles for his quicksort algorithm, which we discuss in
the next section.

4.2 Quicksort

The median-finding partitioning algorithm in the previ-
ous section is actually very close to the implementation
of a full blown sorting algorithm. Building a Quicksort
Algorithm is left as an exercise for the reader, and is rec-
ommended first, before reading the next section ( Quick
sort is diabolical compared to Merge sort, which is a sort
not improved by a randomization step ) .
A key part of quick sort is choosing the right median. But

to get it up and running quickly, start with the assumption
that the array is unsorted, and the rightmost element of
each array is as likely to be the median as any other el-
ement, and that we are entirely optimistic that the right-
most doesn't happen to be the largest key , which would
mean we would be removing one element only ( the par-
tition element) at each step, and having no right array to
sort, and a n-1 left array to sort.
This is where randomization is important for quick sort,
i.e. choosing the more optimal partition key, which is
pretty important for quick sort to work efficiently.
Compare the number of comparisions that are required
for quick sort vs. insertion sort.
With insertion sort, the average number of comparisons
for finding the lowest first element in an ascending sort of
a randomized array is n /2 .
The second element’s average number of comparisons is
(n-1)/2;
the third element ( n- 2) / 2.
The total number of comparisons is [ n + (n - 1) + (n - 2)
+ (n - 3) .. + (n - [n-1]) ] divided by 2, which is [ n x n -
(n-1)! ] /2 or about O(n squared) .
In Quicksort, the number of comparisons will halve at
each partition step if the true median is chosen, since the
left half partition doesn't need to be compared with the
right half partition, but at each step , the number elements
of all partitions created by the previously level of parti-
tioning will still be n.
The number of levels of comparing n elements is the
number of steps of dividing n by two , until n = 1. Or
in reverse, 2 ^ m ~ n, so m = log2 n.
So the total number of comparisons is n (elements) x m
(levels of scanning) or n x log2n ,
So the number of comparison is O(n x log 2(n) ) , which
is smaller than insertion sort’s O(n^2) or O( n x n ).
(Comparing O(n x log 2(n) ) with O( n x n ) , the common
factor n can be eliminated , and the comparison is log2(n)
vs n , which is exponentially different as n becomes larger.
e.g. compare n = 2^16 , or 16 vs 32768, or 32 vs 4 gig ).
To implement the partitioning in-place on a part of the
array determined by a previous recursive call, what is
needed a scan from each end of the part , swapping when-
ever the value of the left scan’s current location is greater
than the partition value, and the value of the right scan’s
current location is less than the partition value. So the
initial step is :-
Assign the partition value to the right most element, swap-
ping if necessary.
So the partitioning step is :-
increment the left scan pointer while the current value is
less than the partition value. decrement the right scan
pointer while the current value is more than the partition
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value , or the location is equal to ormore than the left most
location. exit if the pointers have crossed ( l >= r), OTH-
ERWISE perform a swap where the left and right point-
ers have stopped , on values where the left pointer’s value
is greater than the partition, and the right pointer’s value
is less than the partition. Finally, after exiting the loop
because the left and right pointers have crossed, swap the
rightmost partition value, with the last location of the left
forward scan pointer , and hence ends up between the left
and right partitions.
Make sure at this point , that after the final swap, the cases
of a 2 element in-order array, and a 2 element out-of-
order array , are handled correctly, which should mean
all cases are handled correctly. This is a good debugging
step for getting quick-sort to work.
For the in-order two-element case, the left pointer stops
on the partition or second element , as the partition value
is found. The right pointer , scanning backwards, starts
on the first element before the partition, and stops because
it is in the leftmost position.
The pointers cross, and the loop exits before doing a loop
swap. Outside the loop, the contents of the left pointer at
the rightmost position and the partition , also at the right
most position , are swapped, achieving no change to the
in-order two-element case.
For the out-of-order two-element case, The left pointer
scans and stops at the first element, because it is greater
than the partition (left scan value stops to swap values
greater than the partition value).
The right pointer starts and stops at the first element be-
cause it has reached the leftmost element.
The loop exits because left pointer and right pointer are
equal at the first position, and the contents of the left
pointer at the first position and the partition at the right-
most (other) position , are swapped , putting previously
out-of-order elements , into order.
Another implementation issue, is to how to move the
pointers during scanning. Moving them at the end of the
outer loop seems logical.
partition(a,l,r) { v = a[r]; i = l; j = r −1; while ( i <= j ) {
// need to also scan when i = j as well as i < j , // in the 2
in-order case, // so that i is incremented to the partition //
and nothing happens in the final swap with the partition
at r. while ( a[i] < v) ++i; while ( v <= a[j] && j > 0 )
--j; if ( i >= j) break; swap(a,i,j); ++i; --j; } swap(a, i, r);
return i;
With the pre-increment/decrement unary operators,
scanning can be done just before testing within the test
condition of the while loops, but this means the pointers
should be offset −1 and +1 respectively at the start : so
the algorithm then looks like:-
partition (a, l, r ) { v=a[r]; // v is partition value, at a[r]
i=l-1; j=r; while(true) { while( a[++i] < v ); while( v <=
a[--j] && j > l ); if (i >= j) break; swap ( a, i, j); } swap

(a,i,r); return i; }
And the qsort algorithm is
qsort( a, l, r) { if (l >= r) return ; p = partition(a, l, r)
qsort(a , l, p-1) qsort( a, p+1, r)
}
Finally, randomization of the partition element.
random_partition (a,l,r) { p = random_int( r-l) + l; // me-
dian of a[l], a[p] , a[r] if (a[p] < a[l]) p =l; if ( a[r]< a[p])
p = r; swap(a, p, r); }
this can be called just before calling partition in qsort().

4.3 Shuffling an Array

This keeps data in during shuffle temporaryArray = { }
This records if an item has been shuffled usedItemAr-
ray = { } Number of item in array itemNum = 0 while
( itemNum != lengthOf( inputArray) ){ usedItemAr-
ray[ itemNum ] = false None of the items have been
shuffled itemNum = itemNum + 1 } itemNum = 0
we'll use this again itemPosition = randdomNumber(
0 --- (lengthOf(inputArray) - 1 )) while( itemNum !=
lengthOf( inputArray ) ){ while( usedItemArray[ itemPo-
sition ] != false ){ itemPosition = randdomNumber( 0 ---
(lengthOf(inputArray) - 1 )) } temporaryArray[ itemPo-
sition ] = inputArray[ itemNum ] itemNum = itemNum
+ 1 } inputArray = temporaryArray

4.4 Equal Multivariate Polynomi-
als

[TODO: as of now, there is no known deterministic poly-
nomial time solution, but there is a randomized polytime
solution. The canonical example used to be IsPrime, but
a deterministic, polytime solution has been found.]

4.5 Hash tables

Hashing relies on a hashcode function to randomly dis-
tribute keys to available slots evenly. In java , this is done
in a fairly straight forward method of adding a moderate
sized prime number (31 * 17 ) to a integer key , and then
modulus by the size of the hash table. For string keys, the
initial hash number is obtained by adding the products of
each character’s ordinal value multiplied by 31.
The wikibook Data Structures/Hash Tables chapter cov-
ers the topic well.

https://en.wikibooks.org/wiki/Data_Structures/Hash_Tables
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4.6 Skip Lists

[TODO: Talk about skips lists. The point is to show
how randomization can sometimes make a structure eas-
ier to understand, compared to the complexity of bal-
anced trees.]
Dictionary or Map , is a general concept where a value is
inserted under some key, and retrieved by the key. For in-
stance, in some languages , the dictionary concept is built-
in (Python), in others , it is in core libraries ( C++ S.T.L.
, and Java standard collections library ). The library pro-
viding languages usually lets the programmer choose be-
tween a hash algorithm, or a balanced binary tree im-
plementation (red-black trees). Recently, skip lists have
been offered, because they offer advantages of being im-
plemented to be highly concurrent for multiple threaded
applications.
Hashing is a technique that depends on the randomness
of keys when passed through a hash function, to find a
hash value that corresponds to an index into a linear table.
Hashing works as fast as the hash function, but works well
only if the inserted keys spread out evenly in the array, as
any keys that hash to the same index , have to be deal
with as a hash collision problem e.g. by keeping a linked
list for collisions for each slot in the table, and iterating
through the list to compare the full key of each key-value
pair vs the search key.
The disadvantage of hashing is that in-order traversal is
not possible with this data structure.
Binary trees can be used to represent dictionaries, and
in-order traversal of binary trees is possible by visiting of
nodes ( visit left child, visit current node, visit right child,
recursively ). Binary trees can suffer from poor search
when they are “unbalanced” e.g. the keys of key-value
pairs that are inserted were inserted in ascending or de-
scending order, so they effectively look like linked lists
with no left child, and all right children. self-balancing
binary trees can be done probabilistically (using random-
ness) or deterministically ( using child link coloring as red
or black ) , through local 3-node tree rotation operations.
A rotation is simply swapping a parent with a child node,
but preserving order e.g. for a left child rotation, the left
child’s right child becomes the parent’s left child, and the
parent becomes the left child’s right child.
Red-black trees can be understood more easily if corre-
sponding 2-3-4 trees are examined. A 2-3-4 tree is a tree
where nodes can have 2 children, 3 children, or 4 chil-
dren, with 3 children nodes having 2 keys between the 3
children, and 4 children-nodes having 3 keys between the
4 children. 4-nodes are actively split into 3 single key 2
-nodes, and the middle 2-node passed up to be merged
with the parent node , which , if a one-key 2-node, be-
comes a two key 3-node; or if a two key 3-node, becomes
a 4-node, which will be later split (on the way up). The act
of splitting a three key 4-node is actually a re-balancing
operation, that prevents a string of 3 nodes of grandpar-

ent, parent , child occurring , without a balancing rotation
happening. 2-3-4 trees are a limited example of B-trees,
which usually have enough nodes as to fit a physical disk
block, to facilitate caching of very large indexes that can't
fit in physical RAM ( which is much less common nowa-
days).
A red-black tree is a binary tree representation of a 2-3-
4 tree, where 3-nodes are modeled by a parent with one
red child, and 4 -nodes modeled by a parent with two red
children. Splitting of a 4-node is represented by the par-
ent with 2 red children, flipping the red children to black,
and itself into red. There is never a case where the parent
is already red, because there also occurs balancing oper-
ations where if there is a grandparent with a red parent
with a red child , the grandparent is rotated to be a child
of the parent, and parent is made black and the grand-
parent is made red; this unifies with the previous flip-
ping scenario, of a 4-node represented by 2 red children.
Actually, it may be this standardization of 4-nodes with
mandatory rotation of skewed or zigzag 4-nodes that re-
sults in re-balancing of the binary tree.
A newer optimization is to left rotate any single right red
child to a single left red child, so that only right rotation
of left-skewed inline 4-nodes (3 red nodes inline ) would
ever occur, simplifying the re-balancing code.
Skip lists are modeled after single linked lists, except
nodes are multilevel. Tall nodes are rarer, but the insert
operation ensures nodes are connected at each level.
Implementation of skip lists requires creating randomly
high multilevel nodes, and then inserting them.
Nodes are created using iteration of a random function
where high level node occurs later in an iteration, and are
rarer, because the iteration has survived a number of ran-
dom thresholds (e.g. 0.5, if the random is between 0 and
1).
Insertion requires a temporary previous node array with
the height of the generated inserting node. It is used to
store the last pointer for a given level , which has a key
less than the insertion key.
The scanning begins at the head of the skip list, at highest
level of the head node, and proceeds across until a node
is found with a key higher than the insertion key, and the
previous pointer stored in the temporary previous node
array. Then the next lower level is scanned from that node
, and so on, walking zig-zag down, until the lowest level
is reached.
Then a list insertion is done at each level of the temporary
previous node array, so that the previous node’s next node
at each level is made the next node for that level for the in-
serting node, and the inserting node is made the previous
node’s next node.
Search involves iterating from the highest level of the
head node to the lowest level, and scanning along the next
pointer for each level until a node greater than the search
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key is found, moving down to the next level , and pro-
ceeding with the scan, until the higher keyed node at the
lowest level has been found, or the search key found.
The creation of less frequent-when-taller , randomized
height nodes, and the process of linking in all nodes at ev-
ery level, is what gives skip lists their advantageous overall
structure.

4.6.1 a method of skip list implementation
: implement lookahead single-linked
linked list, then test , then transform
to skip list implementation , then
same test, then performance compar-
ison

What follows is a implementation of skip lists in python.
A single linked list looking at next node as always the cur-
rent node, is implemented first, then the skip list imple-
mentation follows, attempting minimal modification of
the former, and comparison helps clarify implementation.
#copyright SJT 2014, GNU #start by implementing a
one lookahead single-linked list : #the head node has a
next pointer to the start of the list, and the current node
examined is the next node. #This is much easier than
having the head node one of the storage nodes. class LN:
“a list node, so don't have to use dict objects as nodes”
def __init__(self): self.k=None self.v = None self.next
= None class single_list2: def __init__(self): self.h
= LN() def insert(self, k, v): prev = self.h while not
prev.next is None and k < prev.next.k : prev = prev.next
n = LN() n.k, n.v = k, v n.next = prev.next prev.next
= n def show(self): prev = self.h while not prev.next
is None: prev = prev.next print prev.k, prev.v, ' ' def
find (self,k): prev = self.h while not prev.next is None
and k < prev.next.k: prev = prev.next if prev.next is
None: return None return prev.next.k #then after testing
the single-linked list, model SkipList after it. # The
main conditions to remember when trying to transform
single-linked code to skiplist code: # * multi-level nodes
are being inserted # * the head node must be as tall as
the node being inserted # * walk backwards down levels
from highest to lowest when inserting or searching, #
since this is the basis for algorithm efficiency, as taller
nodes are less frequently and widely dispersed. import
random class SkipList3: def __init__(self): self.h =
LN() self.h.next = [None] def insert( self, k , v): ht
= 1 while random.randint(0,10) < 5: ht +=1 if ht >
len(self.h.next) : self.h.next.extend( [None] * (ht -
len(self.h.next) ) ) prev = self.h prev_list = [self.h] *
len(self.h.next) # instead of just prev.next in the single
linked list, each level i has a prev.next for i in xrange(
len(self.h.next)−1, −1, −1): while not prev.next[i] is
None and prev.next[i].k > k: prev = prev.next[i] #record
the previous pointer for each level prev_list[i] = prev n
= LN() n.k,n.v = k,v # create the next pointers to the
height of the node for the current node. n.next = [None]

* ht #print “prev list is ", prev_list # instead of just
linking in one node in the single-linked list , ie. n.next
= prev.next, prev.next =n # do it for each level of n.next
using n.next[i] and prev_list[i].next[i] # there may be
a different prev node for each level, but the same level
must be linked, # therefore the [i] index occurs twice
in prev_list[i].next[i]. for i in xrange(0, ht): n.next[i] =
prev_list[i].next[i] prev_list[i].next[i] = n #print “self.h
", self.h def show(self): #print self.h prev = self.h
while not prev.next[0] is None: print prev.next[0].k,
prev.next[0].v prev = prev.next[0] def find(self, k): prev
= self.h h = len(self.h.next) #print “height ", h for i in
xrange( h-1,−1,−1): while not prev.next[i] is None and
prev.next[i].k > k: prev = prev.next[i] #if prev.next[i]
<> None: #print “i, k, prev.next[i].k and .v”, i, k,
prev.next[i].k, prev.next[i].v if prev.next[i] <> None and
prev.next[i].k == k: return prev.next[i].v if pref.next[i] is
None: return None return prev.next[i].k def clear(self):
self.h= LN() self.h.next = [None] #driver if __name__
== "__main__": #l = single_list2() l = SkipList3()
test_dat = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
pairs = enumerate(test_dat) m = [ (x,y) for x,y in pairs
] while len(m) > 0: i = random.randint(0,len(m)−1)
print “inserting ", m[i] l.insert(m[i][0], m[i][1]) del m[i]
# l.insert( 3, 'C') # l.insert(2, 'B') # l.insert(4, 'D') #
l.insert(1, 'A') l.show() n = int(raw_input(“How many
elements to test?") ) if n <0: n = -n l.clear() import time
l2 = [ x for x in xrange(0, n)] random.shuffle(l2) for x in
l2: l.insert(x , x) l.show() print print “finding..” f = 0 t1
= time.time() nf = [] for x in l2: if l.find(x) == x: f += 1
else: nf.append(x) t2 = time.time() print “time”, t2 - t1
td1 = t2 - t1 print “found ", f print “didn't find”, nf dnf =
[] for x in nf: tu = (x,l.find(x)) dnf.append(tu) print “find
again ", dnf sl = single_list2() for x in l2: sl.insert(x,x)
print “finding..” f = 0 t1 = time.time() for x in l2: if
sl.find(x) == x: f += 1 t2 = time.time() print “time”, t2 -
t1 print “found ", f td2 = t2 - t1 print “factor difference
time”, td2/td1

4.6.2 Role of Randomness

The idea of making higher nodes geometrically randomly
less common, means there are less keys to compare with
the higher the level of comparison, and since these are
randomly selected, this should get rid of problems of de-
generate input that makes it necessary to do tree balanc-
ing in tree algorithms. Since the higher level list have
more widely separated elements, but the search algorithm
moves down a level after each search terminates at a level,
the higher levels help “skip” over the need to search ear-
lier elements on lower lists. Because there are multiple
levels of skipping, it becomes less likely that a meagre
skip at a higher level won't be compensated by better skips
at lower levels, and Pugh claims O(logN) performance
overall.
Conceptually , is it easier to understand than balancing
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trees and hence easier to implement ? The development
of ideas from binary trees, balanced binary trees, 2-3
trees, red-black trees, and B-trees make a stronger con-
ceptual network but is progressive in development, so ar-
guably, once red-black trees are understood, they have
more conceptual context to aid memory , or refresh of
memory.

4.6.3 concurrent access application

Apart from using randomization to enhance a basic mem-
ory structure of linked lists, skip lists can also be extended
as a global data structure used in a multiprocessor appli-
cation. See supplementary topic at the end of the chapter.

4.6.4 Idea for an exercise

Replace the Linux completely fair scheduler red-black
tree implementation with a skip list , and see how your
brand of Linux runs after recompiling.

4.7 Treaps

A treap is a two keyed binary tree, that uses a second
randomly generated key and the previously discussed tree
operation of parent-child rotation to randomly rotate the
tree so that overall, a balanced tree is produced. Recall
that binary trees work by having all nodes in the left sub-
tree small than a given node, and all nodes in a right sub-
tree greater. Also recall that node rotation does not break
this order ( some people call it an invariant), but changes
the relationship of parent and child, so that if the parent
was smaller than a right child, then the parent becomes
the left child of the formerly right child. The idea of a
tree-heap or treap, is that a binary heap relationship is
maintained between parents and child, and that is a par-
ent node has higher priority than its children, which is not
the same as the left , right order of keys in a binary tree,
and hence a recently inserted leaf node in a binary tree
which happens to have a high random priority, can be ro-
tated so it is relatively higher in the tree, having no parent
with a lower priority.
A treap is an alternative to both red-black trees, and skip
lists, as a self-balancing sorted storage structure.

4.7.1 java example of treap implementa-
tion

// Treap example: 2014 SJT, copyleft GNU . im-
port java.util.Iterator; import java.util.LinkedList;
import java.util.Random; public class Treap1<K ex-
tends Comparable<K>, V> { public Treap1(boolean
test) { this.test = test; } public Treap1() {} boolean

test = false; static Random random = new Ran-
dom(System.currentTimeMillis()); class TreapNode {
int priority = 0; K k; V val; TreapNode left, right; public
TreapNode() { if (!test) { priority = random.nextInt();
} } } TreapNode root = null; void insert(K k, V val)
{ root = insert(k, val, root); } TreapNode insert(K k,
V val, TreapNode node) { TreapNode node2 = new
TreapNode(); node2.k = k; node2.val = val; if (node ==
null) { node = node2; } else if (k.compareTo(node.k)
< 0) { node.left = insert(k, val, node.left); } else {
node.right = insert(k, val, node.right); } if (node.left !=
null && node.left.priority > node.priority) { // right ro-
tate (rotate left node up, current node becomes right child
) TreapNode tmp = node.left; node.left = node.left.right;
tmp.right = node; node = tmp; } else if (node.right !=
null && node.right.priority > node.priority) { // left
rotate (rotate right node up , current node becomes
left child) TreapNode tmp = node.right; node.right =
node.right.left; tmp.left = node; node = tmp; } return
node; } V find(K k) { return findNode(k, root); } private
V findNode(K k, Treap1<K, V>.TreapNode node) {
// TODO Auto-generated method stub if (node ==
null) return null; if (k.compareTo(node.k) < 0) { return
findNode(k, node.left); } else if (k.compareTo(node.k)
> 0) { return findNode(k, node.right); } else { return
node.val; } } public static void main(String[] args) {
LinkedList<Integer> dat = new LinkedList<Integer>();
for (int i = 0; i < 15000; ++i) { dat.add(i); } test-
Numbers(dat, true); // no random priority balancing
testNumbers(dat, false); } private static void test-
Numbers(LinkedList<Integer> dat, boolean test) {
Treap1<Integer, Integer> tree= new Treap1<>(test);
for (Integer integer : dat) { tree.insert(integer, in-
teger); } long t1 = System.currentTimeMillis();
Iterator<Integer> iter = dat.iterator(); int found = 0;
while (iter.hasNext()) { Integer j = desc.next(); Integer
i = tree.find(j); if (j.equals(i)) { ++found; } } long t2 =
System.currentTimeMillis(); System.out.println(“found
= " + found + " in " + (t2 - t1)); } }

4.7.2 Treaps compared and contrasted to
Splay trees

Splay trees are similiar to treaps in that rotation is used to
bring a higher priority node to the top without changing
the main key order, except instead of using a random key
for priority, the last accessed node is rotated to the root
of the tree, so that more frequently accessed nodes will
be near the top. This means that in treaps, inserted nodes
will only rotate upto the priority given by their random
priority key, whereas in splay trees, the inserted node is
rotated to the root, and every search in a splay tree will
result in a re-balancing, but not so in a treap.
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4.8 Derandomization

[TODO: Deterministic algorithms for Quicksort exist
that perform as well as quicksort in the average case and
are guaranteed to perform at least that well in all cases.
Best of all, no randomization is needed. Also in the dis-
cussion should be some perspective on using randomiza-
tion: some randomized algorithms give you better confi-
dence probabilities than the actual hardware itself! (e.g.
sunspots can randomly flip bits in hardware, causing fail-
ure, which is a risk we take quite often)]
[Main idea: Look at all blocks of 5 elements, and pick
the median (O(1) to pick), put all medians into an ar-
ray (O(n)), recursively pick the medians of that array, re-
peat until you have < 5 elements in the array. This re-
cursive median constructing of every five elements takes
time T(n)=T(n/5) + O(n), which by the master theorem is
O(n). Thus, in O(n) we can find the right pivot. Need to
show that this pivot is sufficiently good so that we're still
O(n log n) no matter what the input is. This version of
quicksort doesn't need rand, and it never performs poorly.
Still need to show that element picked out is sufficiently
good for a pivot.]

4.9 Exercises

1. Write a find-min function and run it on several dif-
ferent inputs to demonstrate its correctness.

4.10 Supplementary Topic: skip
lists and multiprocessor algo-
rithms

Multiprocessor hardware provides CAS ( compare-
and-set) or CMPEXCHG( compare-and-exchange)(intel
manual 253666.pdf, p 3-188) atomic operations, where
an expected value is loaded into the accumulator register,
which is compared to a target memory location’s contents,
and if the same, a source memory location’s contents is
loaded into the target memories contents, and the zero
flag set, otherwise, if different, the target memory’s con-
tents is returned in the accumulator, and the zero flag is
unset, signifying , for instance, a lock contention. In the
intel architecture, a LOCK instruction is issued before
CMPEXCHG , which either locks the cache from con-
current access if the memory location is being cached, or
locks a shared memory location if not in the cache , for
the next instruction.
The CMPEXCHG can be used to implement locking,
where spinlocks , e.g. retrying until the zero flag is set,
are simplest in design.
Lockless design increases efficiency by avoiding spinning
waiting for a lock .

The java standard library has an implementation of non-
blocking concurrent skiplists, based on a paper titled “a
pragmatic implementation of non-blocking single-linked
lists”.
The skip list implementation is an extension of the lock-
free single-linked list , of which a description follows :-
The insert operation is : X -> Y insert N , N -> Y, X ->
N ; expected result is X -> N -> Y .
A race condition is if M is inserting between X and Y and
M completes first , then N completes, so the situation is
X -> N -> Y <- M
M is not in the list. The CAS operation avoids this, be-
cause a copy of -> Y is checked before updating X -> ,
against the current value of X -> .
If N gets to update X -> first, then whenM tries to update
X -> , its copy of X -> Y , which it got before doing M
-> Y , does not match X -> N , so CAS returns non-zero
flag set. The process that tried to insert M then can retry
the insertion after X, but now the CAS checks ->N is X’s
next pointer, so after retry, X->M->N->Y , and neither
insertions are lost.
If M updates X-> first, N 's copy of X->Y does not match
X ->M , so the CAS will fail here too, and the above retry
of the process insertingN, would have the serialized result
of X ->N -> M -> Y .
The delete operation depends on a separate 'logical' dele-
tion step, before 'physical' deletion.
'Logical' deletion involves a CAS change of the next
pointer into a 'marked' pointer. The java implementation
substitutes with an atomic insertion of a proxy marker
node to the next node.
This prevents future insertions from inserting after a node
which has a next pointer 'marked' , making the latter node
'logically' deleted.
The insert operation relies on another function , search
, returning 2 unmarked , at the time of the invocation,
node pointers : the first pointing to a node , whose next
pointer is equal to the second.
The first node is the node before the insertion point.
The insert CAS operation checks that the current next
pointer of the first node, corresponds to the unmarked
reference of the second, so will fail 'logically' if the first
node’s next pointer has become marked after the call to
the search function above, because the first node has been
concurrently logically deleted.
This meets the aim to prevent a insertion occurring concur-
rently after a node has been deleted.

If the insert operation fails the CAS of the previous node’s
next pointer, the search for the insertion point starts from
the start of the entire list again, since a new unmarked
previous node needs to be found, and there are no previ-
ous node pointers as the list nodes are singly-linked.
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The delete operation outlined above, also relies on the
search operation returning two unmarked nodes, and the
two CAS operations in delete, one for logical deletion
or marking of the second pointer’s next pointer, and the
other for physical deletion by making the first node’s next
pointer point to the second node’s unmarked next pointer.
The first CAS of delete happens only after a check that
the copy of the original second nodes’ next pointer is un-
marked, and ensures that only one concurrent delete suc-
ceeds which reads the second node’s current next pointer
as being unmarked as well.
The second CAS checks that the previous node hasn't
been logically deleted because its next pointer is not the
same as the unmarked pointer to the current second node
returned by the search function, so only an active previ-
ous node’s next pointer is 'physically' updated to a copy
of the original unmarked next pointer of the node being
deleted ( whose next pointer is already marked by the first
CAS).
If the second CAS fails, then the previous node is log-
ically deleted and its next pointer is marked, and so is
the current node’s next pointer. A call to search func-
tion again, tidies things up, because in endeavouring to
find the key of the current node and return adjacent un-
marked previous and current pointers, and while doing
so, it truncates strings of logically deleted nodes .

Lock-free programming issues

Starvation could be possible , as failed inserts have to
restart from the front of the list. Wait-freedom is a con-
cept where the algorithm has all threads safe from starva-
tion.
The ABA problem exists, where a garbage collector recy-
cles the pointer A , but the address is loaded differently,
and the pointer is re-added at a point where a check is
done for A by another thread that read A and is doing a
CAS to check A has not changed ; the address is the same
and is unmarked, but the contents of A has changed.

Top, Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 9, A
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Chapter 5

Backtracking

Top, Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 9, A
Backtracking is a general algorithmic technique that
considers searching every possible combination in order
to solve an optimization problem. Backtracking is also
known as depth-first search or branch and bound. By
inserting more knowledge of the problem, the search tree
can be pruned to avoid considering cases that don't look
promising. While backtracking is useful for hard prob-
lems to which we do not know more efficient solutions,
it is a poor solution for the everyday problems that other
techniques are much better at solving.
However, dynamic programming and greedy algorithms
can be thought of as optimizations to backtracking, so
the general technique behind backtracking is useful for
understanding these more advanced concepts. Learning
and understanding backtracking techniques first provides
a good stepping stone to these more advanced techniques
because you won't have to learn several new concepts all
at once.
This methodology is generic enough that it can be applied
tomost problems. However, even when taking care to im-
prove a backtracking algorithm, it will probably still take
exponential time rather than polynomial time. Addition-
ally, exact time analysis of backtracking algorithms can
be extremely difficult: instead, simpler upperbounds that
may not be tight are given.

5.1 Longest Common Subsequence
(exhaustive version)

Note that the solution to the longest common subsequence
(LCS) problem discussed in this section is not efficient.
However, it is useful for understanding the dynamic pro-
gramming version of the algorithm that is covered later.
The LCS problem is similar to what the Unix “diff” pro-
gram does. The diff command inUnix takes two text files,
A and B, as input and outputs the differences line-by-line
from A and B. For example, diff can show you that lines
missing from A have been added to B, and lines present in
A have been removed from B. The goal is to get a list of
additions and removals that could be used to transform

A to B. An overly conservative solution to the problem
would say that all lines from A were removed, and that
all lines from B were added. While this would solve the
problem in a crude sense, we are concerned with the min-
imal number of additions and removals to achieve a cor-
rect transformation. Consider how you may implement a
solution to this problem yourself.
The LCS problem, instead of dealing with lines in text
files, is concerned with finding common items between
two different arrays. For example,
let a := array {"The”, “great”, “square”, “has”, “no”, “cor-
ners"} let b := array {"The”, “great”, “image”, “has”,
“no”, “form"}
Wewant to find the longest subsequence possible of items
that are found in both a and b in the same order. The LCS
of a and b is

“The”, “great”, “has”, “no”

Now consider two more sequences:
let c := array {1, 2, 4, 8, 16, 32} let d := array {1, 2, 3,
32, 8}
Here, there are two longest common subsequences of c
and d:

1, 2, 32; and
1, 2, 8

Note that

1, 2, 32, 8

is not a common subsequence, because it is only a valid
subsequence of d and not c (because c has 8 before the
32). Thus, we can conclude that for some cases, solutions
to the LCS problem are not unique. If we had more infor-
mation about the sequences available we might prefer one
subsequence to another: for example, if the sequences
were lines of text in computer programs, wemight choose
the subsequences that would keep function definitions or
paired comment delimiters intact (instead of choosing de-
limiters that were not paired in the syntax).
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On the top level, our problem is to implement the follow-
ing function
// lcs -- returns the longest common subsequence of a and
b function lcs(array a, array b): array
which takes in two arrays as input and outputs the subse-
quence array.
How do you solve this problem? You could start by notic-
ing that if the two sequences start with the same word,
then the longest common subsequence always contains
that word. You can automatically put that word on your
list, and you would have just reduced the problem to find-
ing the longest common subset of the rest of the two lists.
Thus, the problem was made smaller, which is good be-
cause it shows progress was made.
But if the two lists do not begin with the same word, then
one, or both, of the first element in a or the first element
in b do not belong in the longest common subsequence.
But yet, one of them might be. How do you determine
which one, if any, to add?
The solution can be thought in terms of the back track-
ing methodology: Try it both ways and see! Either
way, the two sub-problems are manipulating smaller lists,
so you know that the recursion will eventually termi-
nate. Whichever trial results in the longer common sub-
sequence is the winner.
Instead of “throwing it away” by deleting the item from
the array we use array slices. For example, the slice

a[1,..,5]

represents the elements

{a[1], a[2], a[3], a[4], a[5]}

of the array as an array itself. If your language doesn't
support slices you'll have to pass beginning and/or ending
indices along with the full array. Here, the slices are only
of the form

a[1,..]

which, when using 0 as the index to the first element in the
array, results in an array slice that doesn't have the 0th ele-
ment. (Thus, a non-sliced version of this algorithm would
only need to pass the beginning valid index around in-
stead, and that value would have to be subtracted from the
complete array’s length to get the pseudo-slice’s length.)
// lcs -- returns the longest common subsequence of a and
b function lcs(array a, array b): array if a.length == 0
OR b.length == 0: // if we're at the end of either list,
then the lcs is empty return new array {} else-if a[0] ==
b[0]: // if the start element is the same in both, then it is
on the lcs, // so we just recurse on the remainder of both
lists. return append(new array {a[0]}, lcs(a[1,..], b[1,..]))

else // we don't know which list we should discard from.
Try both ways, // pick whichever is better. let discard_a
:= lcs(a[1,..], b) let discard_b := lcs(a, b[1,..]) if dis-
card_a.length > discard_b.length: let result := discard_a
else let result := discard_b fi return result fi end

5.2 Shortest Path Problem (ex-
haustive version)

To be improved as Dijkstra’s algorithm in a later section.

5.3 Largest Independent Set

5.4 Bounding Searches

If you've already found something “better” and you're on
a branch that will never be as good as the one you already
saw, you can terminate that branch early. (Example to
use: sum of numbers beginning with 1 2, and then each
number following is a sum of any of the numbers plus the
last number. Show performance improvements.)

5.5 Constrained 3-Coloring

This problem doesn't have immediate self-similarity, so
the problem first needs to be generalized. Methodology:
If there’s no self-similarity, try to generalize the problem
until it has it.

5.6 Traveling Salesperson Problem

Here, backtracking is one of the best solutions known.
Top, Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 9, A
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Chapter 6

Dynamic Programming

Top, Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 9, A
Dynamic programming can be thought of as an opti-
mization technique for particular classes of backtrack-
ing algorithms where subproblems are repeatedly solved.
Note that the term dynamic in dynamic programming
should not be confused with dynamic programming lan-
guages, like Scheme or Lisp. Nor should the term pro-
gramming be confused with the act of writing computer
programs. In the context of algorithms, dynamic pro-
gramming always refers to the technique of filling in a
table with values computed from other table values. (It’s
dynamic because the values in the table are filled in by
the algorithm based on other values of the table, and it’s
programming in the sense of setting things in a table, like
how television programming is concerned with when to
broadcast what shows.)

6.1 Fibonacci Numbers

Before presenting the dynamic programming technique,
it will be useful to first show a related technique, called
memoization, on a toy example: The Fibonacci num-
bers. What we want is a routine to compute the nth Fi-
bonacci number:
// fib -- compute Fibonacci(n) function fib(integer n): in-
teger
By definition, the nth Fibonacci number, denoted Fn is

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2

Howwould one create a good algorithm for finding the nth
Fibonacci-number? Let’s begin with the naive algorithm,
which codes the mathematical definition:
// fib -- compute Fibonacci(n) function fib(integer n):
integer assert (n >= 0) if n == 0: return 0 fi if n == 1:
return 1 fi return fib(n - 1) + fib(n - 2) end
This code sample is also available in Ada.

Note that this is a toy example because there is already a
mathematically closed form for Fn :

F (n) =
ϕn − (1− ϕ)n√

5

where:

ϕ =
1 +

√
5

2

This latter equation is known as theGolden Ratio. Thus, a
program could efficiently calculate Fn for even very large
n. However, it’s instructive to understand what’s so inef-
ficient about the current algorithm.
To analyze the running time of fib we should look at a call
tree for something even as small as the sixth Fibonacci
number:

Every leaf of the call tree has the value 0 or 1, and the sum
of these values is the final result. So, for any n, the number
of leaves in the call tree is actually Fn itself! The closed
form thus tells us that the number of leaves in fib(n) is
approximately equal to

(
1 +

√
5

2

)n

≈ 1.618n = 2lg(1.618
n) = 2n lg(1.618) ≈ 20.69n.

(Note the algebraic manipulation used above to make the
base of the exponent the number 2.) This means that
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there are far too many leaves, particularly considering the
repeated patterns found in the call tree above.
One optimization we canmake is to save a result in a table
once it’s already been computed, so that the same result
needs to be computed only once. The optimization pro-
cess is called memoization and conforms to the following
methodology:
Consider the solution presented in the backtracking chap-
ter for the Longest Common Subsequence problem. In
the execution of that algorithm, many common subprob-
lems were computed repeatedly. As an optimization, we
can compute these subproblems once and then store the
result to read back later. A recursive memoization al-
gorithm can be turned “bottom-up” into an iterative al-
gorithm that fills in a table of solutions to subproblems.
Some of the subproblems solved might not be needed by
the end result (and that is where dynamic programming
differs from memoization), but dynamic programming
can be very efficient because the iterative version can bet-
ter use the cache and have less call overhead. Asymptot-
ically, dynamic programming and memoization have the
same complexity.
So how would a fibonacci program using memoization
work? Consider the following program (f[n] contains the
nth Fibonacci-number if has been calculated, −1 other-
wise):
function fib(integer n): integer if n == 0 or n == 1:
return n else-if f[n] != −1: return f[n] else f[n] = fib(n
- 1) + fib(n - 2) return f[n] fi end
This code sample is also available in Ada.

The code should be pretty obvious. If the value of fib(n)
already has been calculated it’s stored in f[n] and then re-
turned instead of calculating it again. That means all the
copies of the sub-call trees are removed from the calcu-
lation.

The values in the blue boxes are values that already have
been calculated and the calls can thus be skipped. It is
thus a lot faster than the straight-forward recursive algo-
rithm. Since every value less than n is calculated once,
and only once, the first time you execute it, the asymp-

totic running time isO(n) . Any other calls to it will take
O(1) since the values have been precalculated (assuming
each subsequent call’s argument is less than n).
The algorithm does consume a lot of memory. When we
calculate fib(n), the values fib(0) to fib(n) are stored in
main memory. Can this be improved? Yes it can, al-
though theO(1) running time of subsequent calls are ob-
viously lost since the values aren't stored. Since the value
of fib(n) only depends on fib(n-1) and fib(n-2) we can dis-
card the other values by going bottom-up. If we want to
calculate fib(n), we first calculate fib(2) = fib(0) + fib(1).
Then we can calculate fib(3) by adding fib(1) and fib(2).
After that, fib(0) and fib(1) can be discarded, since we
don't need them to calculate anymore values. From fib(2)
and fib(3) we calculate fib(4) and discard fib(2), then we
calculate fib(5) and discard fib(3), etc. etc. The code goes
something like this:
function fib(integer n): integer if n == 0 or n == 1:
return n fi let u := 0 let v := 1 for i := 2 to n: let t := u + v
u := v v := t repeat return v end
This code sample is also available in Ada.

We can modify the code to store the values in an array
for subsequent calls, but the point is that we don't have to.
This method is typical for dynamic programming. First
we identify what subproblems need to be solved in order
to solve the entire problem, and then we calculate the val-
ues bottom-up using an iterative process.

6.2 Longest Common Subsequence
(DP version)

This will remind us of the backtracking version and then
improve it via memoization. Finally, the recursive al-
gorithm will be made iterative and be full-fledged DP.
[TODO: write this section]

6.3 Matrix Chain Multiplication

Suppose that you need to multiply a series of n matrices
M1, . . . ,Mn together to form a product matrix P :

P = M1 ·M2 · · ·Mn−1 ·Mn

This will require n − 1 multiplications, but what is the
fastest way we can form this product? Matrix multiplica-
tion is associative, that is,

(A ·B) · C = A · (B · C)

for any A,B,C , and so we have some choice in what
multiplication we perform first. (Note that matrix multi-

https://en.wikibooks.org/wiki/Ada_Programming/Algorithms#Cached_Implementation
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plication is not commutative, that is, it does not hold in
general that A ·B = B ·A .)
Because you can only multiply two matrices at a time the
productM1 ·M2 ·M3 ·M4 can be paranthesized in these
ways:

((M1M2)M3)M4

(M1(M2M3))M4

M1((M2M3)M4)

(M1M2)(M3M4)

M1(M2(M3M4))

Two matricesM1 andM2 can be multiplied if the num-
ber of columns inM1 equals the number of rows inM2 .
The number of rows in their product will equal the num-
ber rows inM1 and the number of columns will equal the
number of columns inM2 . That is, if the dimensions of
M1 is a × b and M2 has dimensions b × c their product
will have dimensions a× c .
To multiply two matrices with each other we use a func-
tion calledmatrix-multiply that takes twomatrices and re-
turns their product. We will leave implementation of this
function alone for the moment as it is not the focus of this
chapter (how to multiply two matrices in the fastest way
has been under intensive study for several years [TODO:
propose this topic for the Advanced book]). The time
this function takes to multiply two matrices of size a× b
and b × c is proportional to the number of scalar mul-
tiplications, which is proportional to abc . Thus, paran-
thezation matters: Say that we have three matrices M1 ,
M2 and M3 . M1 has dimensions 5 × 100 , M2 has di-
mensions 100× 100 andM3 has dimensions 100× 50 .
Let’s paranthezise them in the two possible ways and see
which way requires the least amount of multiplications.
The two ways are

((M1M2)M3)

(M1(M2M3))

To form the product in the first way requires 75000
scalar multiplications (5*100*100=50000 to form prod-
uct (M1M2) and another 5*100*50=25000 for the last
multiplications.) This might seem like a lot, but in com-
parison to the 525000 scalar multiplications required by
the second parenthesization (50*100*100=500000 plus
5*50*100=25000) it is miniscule! You can see why
determining the parenthesization is important: imagine
what would happen if we needed to multiply 50 matri-
ces!

6.3.1 Forming a Recursive Solution

Note that we concentrate on finding a how many scalar
multiplications are needed instead of the actual order.
This is because once we have found a working algorithm
to find the amount it is trivial to create an algorithm for
the actual parenthesization. It will, however, be discussed
in the end.
So how would an algorithm for the optimum parenthe-
sization look? By the chapter title you might expect that
a dynamic programming method is in order (not to give
the answer away or anything). So how would a dynamic
programming method work? Because dynamic program-
ming algorithms are based on optimal substructure, what
would the optimal substructure in this problem be?
Suppose that the optimal way to parenthesize

M1M2 . . .Mn

splits the product at k :

(M1M2 . . .Mk)(Mk+1Mk+2 . . .Mn)

Then the optimal solution contains the optimal solutions
to the two subproblems

(M1 . . .Mk)

(Mk+1 . . .Mn)

That is, just in accordance with the fundamental princi-
ple of dynamic programming, the solution to the problem
depends on the solution of smaller sub-problems.
Let’s say that it takes c(n) scalar multiplications to multi-
ply matricesMn andMn+1 , and f(m,n) is the number
of scalar multiplications to be performed in an optimal
parenthesization of the matrices Mm . . .Mn . The defi-
nition of f(m,n) is the first step toward a solution.
Whenn−m = 1 , the formulation is trivial; it is just c(m)
. But what is it when the distance is larger? Using the
observation above, we can derive a formulation. Suppose
an optimal solution to the problem divides the matrices at
matrices k and k+1 (i.e. (Mm . . .Mk)(Mk+1 . . .Mn) )
then the number of scalar multiplications are.

f(m, k) + f(k + 1, n) + c(k)

That is, the amount of time to form the first product, the
amount of time it takes to form the second product, and
the amount of time it takes to multiply them together. But
what is this optimal value k? The answer is, of course, the
value that makes the above formula assume its minimum
value. We can thus form the complete definition for the
function:
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f(m,n) =

{
minm≤k<n f(m, k) + f(k + 1, n) + c(k) if n−m > 1

0 if n = m

A straight-forward recursive solution to this would look
something like this (the language is Wikicode):
function f(m, n) { ifm == n return 0 letminCost :=∞ for
k := m to n - 1 { v := f(m, k) + f(k + 1, n) + c(k) if v <
minCost minCost := v } return minCost }
This rather simple solution is, unfortunately, not a very
good one. It spends mountains of time recomputing data
and its running time is exponential.
Using the same adaptation as above we get:
function f(m, n) { if m == n return 0 else-if f[m,n]
!= −1: return f[m,n] fi let minCost := ∞ for k :=
m to n - 1 { v := f(m, k) + f(k + 1, n) + c(k) if v <
minCost minCost := v } f[m,n]=minCost returnminCost }

6.4 Parsing Any Context-Free
Grammar

Note that special types of context-free grammars can be
parsed much more efficiently than this technique, but in
terms of generality, the DP method is the only way to go.
Top, Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 9, A
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Chapter 7

Greedy Algorithms

Top, Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 9, A
In the backtracking algorithms we looked at, we saw al-
gorithms that found decision points and recursed over all
options from that decision point. A greedy algorithm
can be thought of as a backtracking algorithm where at
each decision point “the best” option is already known
and thus can be picked without having to recurse over
any of the alternative options.
The name “greedy” comes from the fact that the algo-
rithms make decisions based on a single criterion, instead
of a global analysis that would take into account the de-
cision’s effect on further steps. As we will see, such a
backtracking analysis will be unnecessary in the case of
greedy algorithms, so it is not greedy in the sense of caus-
ing harm for only short-term gain.
Unlike backtracking algorithms, greedy algorithms can't
be made for every problem. Not every problem is “solv-
able” using greedy algorithms. Viewing the finding solu-
tion to an optimization problem as a hill climbing problem
greedy algorithms can be used for only those hills where
at every point taking the steepest step would lead to the
peak always.
Greedy algorithms tend to be very efficient and can be im-
plemented in a relatively straightforward fashion. Many
a times in O(n) complexity as there would be a single
choice at every point. However, most attempts at creating
a correct greedy algorithm fail unless a precise proof of
the algorithm’s correctness is first demonstrated. When
a greedy strategy fails to produce optimal results on all
inputs, we instead refer to it as a heuristic instead of an
algorithm. Heuristics can be useful when speed is more
important than exact results (for example, when “good
enough” results are sufficient).

7.1 Event Scheduling Problem

The first problem we'll look at that can be solved with a
greedy algorithm is the event scheduling problem. We are
given a set of events that have a start time and finish time,
and we need to produce a subset of these events such that
no events intersect each other (that is, having overlapping
times), and that we have the maximum number of events

scheduled as possible.
Here is a formal statement of the problem:

Input: events: a set of intervals (si, fi) where
si is the start time, and fi is the finish time.
Solution: A subset S of Events.
Constraint: No events can intersect (start time
exclusive). That is, for all intervals i =
(si, fi), j = (sj , fj) where si < sj it holds
that fi ≤ sj .
Objective: Maximize the number of scheduled
events, i.e. maximize the size of the set S.

We first begin with a backtracking solution to the prob-
lem:
// event-schedule -- schedule as many non-conflicting
events as possible function event-schedule(events array of
s[1..n], j[1..n]): set if n == 0: return ∅ fi if n == 1: return
{events[1]} fi let event := events[1] let S1 := union(event-
schedule(events - set of conflicting events), event) let
S2 := event-schedule(events - {event}) if S1.size() >=
S2.size(): return S1 else return S2 fi end
The above algorithm will faithfully find the largest set of
non-conflicting events. It brushes aside details of how the
set

events - set of conflicting events

is computed, but it would requireO(n) time. Because the
algorithm makes two recursive calls on itself, each with
an argument of sizen−1 , and because removing conflicts
takes linear time, a recurrence for the time this algorithm
takes is:

T (n) = 2 · T (n− 1) +O(n)

which is O(2n) .
But suppose instead of picking just the first element in
the array we used some other criterion. The aim is to
just pick the “right” one so that we wouldn't need two
recursive calls. First, let’s consider the greedy strategy of
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picking the shortest events first, until we can add no more
events without conflicts. The idea here is that the shortest
events would likely interfere less than other events.
There are scenarios were picking the shortest event first
produces the optimal result. However, here’s a scenario
where that strategy is sub-optimal:

Above, the optimal solution is to pick event A and C, in-
stead of just B alone. Perhaps instead of the shortest event
we should pick the events that have the least number of
conflicts. This strategy seems more direct, but it fails in
this scenario:

Above, we canmaximize the number of events by picking
A, B, C, D, and E. However, the events with the least
conflicts are 6, 2 and 7, 3. But picking one of 6, 2 and
one of 7, 3 means that we cannot pick B, C and D, which
includes three events instead of just two.

7.1.1 = Longest Path solution to critical
path scheduling of jobs

Construction with dependency constraints but concur-
rency can use critical path determination to findminimum
time feasible, which is equivalent to a longest path in a
directed acyclic graph problem. By using relaxation and
breath first search , the shortest path can be the longest
path by negating weights(time constraint) , finding solu-
tion, then restoring the positive weights. (Relaxation is
determining the parent with least accumulated weight for
each adjacent node being scheduled to be visited)

7.2 Dijkstra’s Shortest Path Algo-
rithm

With two (high-level, pseudocode) transformations, Di-
jsktra’s algorithm can be derived from the much less ef-
ficient backtracking algorithm. The trick here is to prove
the transformations maintain correctness, but that’s the
whole insight into Dijkstra’s algorithm anyway. [TODO:
important to note the paradox that to solve this problem
it’s easier to solve a more-general version. That is, short-
est path from s to all nodes, not just to t. Worthy of its
own colored box.]
To see the workings of Dijkstra’s Shortest Path Algo-
rithm, take an example:
There is a start and end node, with 2 paths between them
; one path has cost 30 on first hop, then 10 on last hop to
the target node, with total cost 40. Another path cost 10
on first hop, 10 on second hop, and 40 on last hop, with
total cost 60.
The start node is given distance zero so it can be at the
front of a shortest distance queue, all the other nodes are
given infinity or a large number e.g. 32767 .
This makes the start node the first current node in the
queue.
With each iteration, the current node is the first node of
a shortest path queue. It looks at all nodes adjacent to the
current node;
For the case of the start node, in the first path it will find
a node of distance 30, and in the second path, an adjacent
node of distance 10. The current nodes distance , which is
zero at the beginning, is added to distances of the adjacent
nodes, and the distances from the start node of each node
are updated , so the nodes will be 30+0 = 30 in the 1st
path , and 10+0=10 in the 2nd path.
Importantly, also updated is a previous pointer attribute
for each node, so each node will point back to the current
node, which is the start node for these two nodes.
Each node’s priority is updated in the priority queue using
the new distance.
That ends one iteration. The current node was removed
from the queue before examining its adjacent nodes.
In the next iteration, the front of the queue will be the
node in the second path of distance 10, and it has only one
adjacent node of distance 10, and that adjacent node will
distance will be updated from 32767 to 10 (the current
node distance) + 10 ( the distance from the current node)
= 20.
In the next iteration, the second path node of cost 20 will
be examined, and it has one adjacent hop of 40 to the
target node, and the target nodes distance is updated from
32767 to 20 + 40 = 60 . The target node has its priority
updated.
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In the next iteration, the shortest path node will be the first
path node of cost 30, and the target node has not been yet
removed from the queue. It is also adjacent to the target
node, with the total distance cost of 30 + 10 = 40.
Since 40 is less than 60, the previous calculated distance
of the target node, the target node distance is updated to
40, and the previous pointer of the target node is updated
to the node on the first path.
In the final iteration, the shortest path node is the target
node, and the loop exits.
Looking at the previous pointers starting with the target
node, a shortest path can be reverse constructed as a list
to the start node.
Given the above example, what kind of data structures
are needed for the nodes and the algorithm ?
# author , copyright under GFDL class Node : def
__init__(self, label, distance = 32767 ): # a bug
in constructor, uses a shared map initializer # , ad-
jacency_distance_map = {} ): self.label = label
self.adjacent = {} # this is an adjacency map, with keys
nodes, and values the adjacent distance self.distance =
distance # this is the updated distance from the start node,
used as the node’s priority # default distance is 32767
self.shortest_previous = None #this the last shortest
distance adjacent node # the logic is that the last adjacent
distance added is recorded , for any distances of the same
node added def add_adjacent(self, local_distance, node):
self.adjacent[node]=local_distance print “adjacency to ",
self.label, " of ", self.adjacent[node], " to ", \ node.label
def get_adjacent(self) : return self.adjacent.iteritems()
def update_shortest( self, node): new_distance =
node.adjacent[self] + node.distance #DEBUG print “for
node ", node.label, " updating ", self.label, \ " with
distance ", node.distance , \ " and adjacent distance ",
node.adjacent[self] updated = False # node’s adjacency
map gives the adjacent distance for this node # the new
distance for the path to this (self)node is the adjacent
distance plus the other node’s distance if new_distance <
self.distance : # if it is the shortest distance then record
the distance, and make the previous node that node
self.distance = new_distance self.shortest_previous=
node updated = True return updated MAX_IN_PQ =
100000 class PQ: def __init__(self , sign = −1 ): self.q
= [None ] * MAX_IN_PQ # make the array preallocated
self.sign = sign # a negative sign is a minimum priority
queue self.end = 1 # this is the next slot of the array
(self.q) to be used , self.map = {} def insert( self,
priority, data): self.q[self.end] = (priority, data) # sift
up after insert p = self.end self.end = self.end + 1
self.sift_up(p) def sift_up(self, p): # p is the current
node’s position # q[p][0] is the priority, q[p][1] is
the item or node # while the parent exists ( p >= 1)
, and parent’s priority is less than the current node’s
priority while p / 2 != 0 and self.q[p/2][0]*self.sign
< self.q[p][0]*self.sign: # swap the parent and the
current node, and make the current node’s position the

parent’s position tmp = self.q[p] self.q[p] = self.q[p/2]
self.q[p/2] = tmp self.map[self.q[p][1]] = p p = p/2 #
this map’s the node to the position in the priority queue
self.map[self.q[p][1]] = p return p def remove_top(self):
if self.end == 1 : return (−1, None) (priority, node) =
self.q[1] # put the end of the heap at the top of the heap,
and sift it down to adjust the heap # after the heap’s
top has been removed. this takes log2(N) time, where
N iis the size of the heap. self.q[1] = self.q[self.end-1]
self.end = self.end - 1 self.sift_down(1) return (priority,
node) def sift_down(self, p): while 1: l = p * 2 # if the left
child’s position is more than the size of the heap, # then
left and right children don't exist if ( l > self.end) : break
r= l + 1 # the selected child node should have the greatest
priority t = l if r < self.end and self.q[r][0]*self.sign
> self.q[l][0]*self.sign : t = r print “checking for sift
down of ", self.q[p][1].label, self.q[p][0], " vs child ",
self.q[t][1].label, self.q[t][0] # if the selected child with
the greatest priority has a higher priority than the current
node if self.q[t] [0] * self. sign > self.q [p] [0] * self.sign
: # swap the current node with that child, and update
the mapping of the child node to its new position tmp
= self. q [ t ] self. q [ t ] = self.q [ p ] self. q [ p ] =
tmp self.map [ tmp [1 ] ] = p p = t else: break # end the
swap if the greatest priority child has a lesser priority
than the current node # after the sift down, update the
new position of the current node. self.map [ self.q[p][1]
] = p return p def update_priority(self, priority, data ) :
p = self. map[ data ] print “priority prior update”, p, “for
priority”, priority, " previous priority”, self.q[p][0] if p
is None : return −1 self.q[p] = (priority, self.q[p][1]) p
= self.sift_up(p) p = self.sift_down(p) print “updated ",
self.q[p][1].label , p, “priority now ", self.q[p][0] return
p class NoPathToTargetNode ( BaseException): pass
def test_1() : st = Node('start', 0) p1a = Node('p1a') p1b
= Node('p1b') p2a = Node('p2a') p2b = Node('p2b') p2c
= Node('p2c') p2d = Node('p2d') targ = Node('target')
st.add_adjacent ( 30, p1a) #st.add_adjacent ( 10, p2a)
st.add_adjacent ( 20, p2a) #p1a.add_adjacent(10,
targ) p1a.add_adjacent(40, targ) p1a.add_adjacent(10,
p1b) p1b.add_adjacent(10, targ) # testing alternative
#p1b.add_adjacent(20, targ) p2a.add_adjacent(10,
p2b) p2b.add_adjacent(5,p2c) p2c.add_adjacent(5,p2d)
#p2d.add_adjacent(5,targ) #chooses the alternate path
p2d.add_adjacent(15,targ) pq = PQ() # st.distance is
0, but the other’s have default starting distance 32767
pq.insert( st.distance, st) pq.insert( p1a.distance,
p1a) pq.insert( p2a.distance, p2a) pq.insert(
p2b.distance, p2b) pq.insert(targ.distance, targ)
pq.insert( p2c.distance, p2c) pq.insert( p2d.distance,
p2d) pq.insert(p1b.distance, p1b) node = None while
node != targ : (pr, node ) = pq.remove_top() #debug
print “node ", node.label, " removed from top " if node
is None: print “target node not in queue” raise elif pr ==
32767: print “max distance encountered so no further
nodes updated. No path to target node.” raise NoPathTo-
TargetNode # update the distance to the start node using
this node’s distance to all of the nodes adjacent to it,
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and update its priority if # a shorter distance was found
for an adjacent node ( .update_shortest(..) returns true
). # this is the greedy part of the dijsktra’s algorithm,
always greedy for the shortest distance using the priority
queue. for adj_node , dist in node.get_adjacent():
#debug print “updating adjacency from ", node.label, "
to ", adj_node.label if adj_node.update_shortest( node
): pq.update_priority( adj_node.distance, adj_node)
print “node and targ ", node, targ , node <> targ print
“length of path”, targ.distance print " shortest path”
#create a reverse list from the target node, through the
shortes path nodes to the start node node = targ path
= [] while node <> None : path.append(node) node =
node. shortest_previous for node in reversed(path): #
new iterator version of list.reverse() print node.label if
__name__ == "__main__": test_1()

7.3 Minimum spanning tree

Greedily looking for the minimum weight edges ; this
could be achieved with sorting edges into a list in ascend-
ing weight. Two well known algorithms are Prim’s Algo-
rithm and Kruskal’s Algorithm. Kruskal selects the next
minimum weight edge that has the condition that no cy-
cle is formed in the resulting updated graph. Prim’s algo-
rithm selects a minimum edge that has the condition that
only one edge is connected to the tree. For both the algo-
rithms, it looks that most work will be done verifying an
examined edge fits the primary condition. In Kruskal’s,
a search and mark technique would have to be done on
the candidate edge. This will result in a search of any
connected edges already selected, and if a marked edge
is encountered, than a cycle has been formed. In Prim’s
algorithm, the candidate edge would be compared to the
list of currently selected edges, which could be keyed on
vertex number in a symbol table, and if both end vertexes
are found, then the candidate edge is rejected.

7.4 Maximum Flow in weighted
graphs

In a flow graph, edges have a forward capacity , a direc-
tion, and a flow quantity in the direction and less than
or equal to the forward capacity. Residual capacity is
capacity-flow in the direction of the edge, and flow in the
other direction.
Maxflow in Ford Fulkerson method requires a step to
search for a viable path from a source to a sink vertex,
with non-zero residual capacities at each step of the path.
Then theminimum residual capacity determines themax-
imum flow for this path. Multiple iterations of searches
using BFS can be done (the Edmond-Karp algorithm ),
until the sink vertex is not marked when the last node is

off the queue or stack. All marked nodes in the last iter-
ation are said to be in the minimum cut.
Top, Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 9, A
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Hill Climbing

Top, Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 9, A
Hill climbing is a technique for certain classes of opti-
mization problems. The idea is to start with a sub-optimal
solution to a problem (i.e., start at the base of a hill) and
then repeatedly improve the solution (walk up the hill)
until some condition is maximized (the top of the hill is
reached).
One of the most popular hill-climbing problems is the
network flow problem. Although network flowmay sound
somewhat specific it is important because it has high ex-
pressive power: for example, many algorithmic problems
encountered in practice can actually be considered special
cases of network flow. After covering a simple example
of the hill-climbing approach for a numerical problem we
cover network flow and then present examples of appli-
cations of network flow.

8.1 Newton’s Root FindingMethod

An illustration of Newton’s method: The zero of the f(x) function
is at x. We see that the guess x⛼₊₁ is a better guess than x⛼ because
it is closer to x. (from Wikipedia)

Newton’s Root Finding Method is a three-centuries-old
algorithm for finding numerical approximations to roots
of a function (that is a point x where the function f(x)
becomes zero), starting from an initial guess. You need to

know the function f(x) and its first derivative f ′(x) for
this algorithm. The idea is the following: In the vicinity
of the initial guess x0 we can form the Taylor expansion
of the function

f(x) = f(x0 + ϵ) ≈ f(x0) + ϵf ′(x0)

+ ϵ2

2 f
′′(x0) + ...

which gives a good approximation to the function near x0

. Taking only the first two terms on the right hand side,
setting them equal to zero, and solving for ϵ , we obtain

ϵ = − f(x0)

f ′(x0)

which we can use to construct a better solution

x1 = x0 + ϵ = x0 −
f(x0)

f ′(x0)
.

This new solution can be the starting point for applying
the same procedure again. Thus, in general a better ap-
proximation can be constructed by repeatedly applying

xn+1 = xn − f(xn)

f ′(xn)
.

As shown in the illustration, this is nothing else but the
construction of the zero from the tangent at the initial
guessing point. In general, Newton’s root finding method
converges quadratically, except when the first derivative
of the solution f ′(x) = 0 vanishes at the root.
Coming back to the “Hill climbing” analogy, we could
apply Newton’s root finding method not to the function
f(x) , but to its first derivative f ′(x) , that is look for x
such that f ′(x) = 0 . This would give the extremal po-
sitions of the function, its maxima and minima. Starting
Newton’s method close enough to a maximum this way,
we climb the hill.

Example application of Newton’s method

The net present value function is a function of time, an in-
terest rate, and a series of cash flows. A related function
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is Internal Rate of Return. The formula for each period is
(CFᵢ x (1+ i/100) t , and this will give a polynomial func-
tion which is the total cash flow, and equals zero when the
interest rate equals the IRR. In using Newton’s method,
x is the interest rate, and y is the total cash flow, and the
method will use the derivative function of the polynomial
to find the slope of the graph at a given interest rate (x-
value), which will give the x⛼₊₁ , or a better interest rate
to try in the next iteration to find the target x where y (
the total returns) is zero.
Instead of regarding continuous functions, the hill-
climbingmethod can also be applied to discrete networks.

8.2 Network Flow

Suppose you have a directed graph (possibly with cycles)
with one vertex labeled as the source and another vertex
labeled as the destination or the “sink”. The source vertex
only has edges coming out of it, with no edges going into
it. Similarly, the destination vertex only has edges going
into it, with no edges coming out of it. We can assume
that the graph fully connected with no dead-ends; i.e., for
every vertex (except the source and the sink), there is at
least one edge going into the vertex and one edge going
out of it.
We assign a “capacity” to each edge, and initially we'll
consider only integral-valued capacities. The following
graph meets our requirements, where “s” is the source
and “t” is the destination:

We'd like now to imagine that we have some series of
inputs arriving at the source that we want to carry on the
edges over to the sink. The number of units we can send
on an edge at a time must be less than or equal to the
edge’s capacity. You can think of the vertices as cities
and the edges as roads between the cities and we want to
send as many cars from the source city to the destination
city as possible. The constraint is that we cannot send

more cars down a road than its capacity can handle.
The goal of network flow is to send as much traffic from
s to t as each street can bear.
To organize the traffic routes, we can build a list of differ-
ent paths from city s to city t . Each path has a carrying
capacity equal to the smallest capacity value for any edge
on the path; for example, consider the following path p :

Even though the final edge of p has a capacity of 8, that
edge only has one car traveling on it because the edge
before it only has a capacity of 1 (thus, that edge is at
full capacity). After using this path, we can compute
the residual graph by subtracting 1 from the capacity
of each edge:

(We subtracted 1 from the capacity of each edge in p be-
cause 1 was the carrying capacity of p .) We can say that
path p has a flow of 1. Formally, a flow is an assignment
f(e) of values to the set of edges in the graphG = (V,E)
such that:
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∀e ∈ E : f(e) ∈ R

∀(u, v) ∈ E : f((u, v)) = −f((v, u))

∀u ∈ V, u ̸= s, t :
∑
v∈V

f(u, v) = 0

∀e ∈ E : f(e) ≤ c(e)

Where s is the source node and t is the sink node, and
c(e) ≥ 0 is the capacity of edge e . We define the value
of a flow f to be:

Value(f) =
∑
v∈V

f((s, v))

The goal of network flow is to find an f such that
Value(f) is maximal. To be maximal means that there
is no other flow assignment that obeys the constraints 1-4
that would have a higher value. The traffic example can
describe what the four flow constraints mean:

1. ∀e ∈ E : f(e) ∈ R . This rule simply defines a
flow to be a function from edges in the graph to real
numbers. The function is defined for every edge in
the graph. You could also consider the “function” to
simply be a mapping: Every edge can be an index
into an array and the value of the array at an edge is
the value of the flow function at that edge.

2. ∀(u, v) ∈ E : f((u, v)) = −f((v, u)) . This rule
says that if there is some traffic flowing from node u
to node v then there should be considered negative
that amount flowing from v to u. For example, if two
cars are flowing from city u to city v, then negative
two cars are going in the other direction. Similarly,
if three cars are going from city u to city v and two
cars are going city v to city u then the net effect is
the same as if one car was going from city u to city
v and no cars are going from city v to city u.

3. ∀u ∈ V, u ̸= s, t :
∑

v∈V f(u, v) = 0 . This
rule says that the net flow (except for the source and
the destination) should be neutral. That is, you won't
ever have more cars going into a city than you would
have coming out of the city. New cars can only come
from the source, and cars can only be stored in the
destination. Similarly, whatever flows out of s must
eventually flow into t. Note that if a city has three
cars coming into it, it could send two cars to one city
and the remaining car to a different city. Also, a city
might have cars coming into it frommultiple sources
(although all are ultimately from city s).

4. ∀e ∈ E : f(e) ≤ c(e) .

8.3 The Ford-Fulkerson Algorithm

The following algorithm computes the maximal flow for a
given graph with non-negative capacities. What the algo-
rithm does can be easy to understand, but it’s non-trivial
to show that it terminates and provides an optimal solu-
tion.
function net-flow(graph (V, E), node s, node t, cost c):
flow initialize f(e) := 0 for all e in E loop while not done
for all e in E: // compute residual capacities let cf(e) :=
c(e) - f(e) repeat let Gf := (V, {e : e in E and cf(e) >
0}) find a path p from s to t in Gf // e.g., use depth first
search if no path p exists: signal done let path-capacities
:= map(p, cf) // a path is a set of edges let m := min-
val-of(path-capacities) // smallest residual capacity of p
for all (u, v) in p: // maintain flow constraints f((u, v))
:= f((u, v)) +m f((v, u)) := f((v, u)) -m repeat repeat end

The Ford-Fulkerson algorithm uses repeated calls to
Breadth-First Search ( use a queue to schedule the chil-
dren of a node to become the current node). Breadth-
First Search increments the length of each path +1 so that
the first path to get to the destination, the shortest path,
will be the first off the queue. This is in contrast with us-
ing a Stack, which is Depth-First Search, and will come
up with *any* path to the target, with the “descendants”
of current node examined, but not necessarily the short-
est.

• In one search, a path from source to target is found.
All nodes are made unmarked at the beginning of
a new search. Seen nodes are “marked” , and not
searched again if encountered again. Eventually,
all reachable nodes will have been scheduled on the
queue , and nomore unmarked nodes can be reached
off the last the node on the queue.

• During the search, nodes scheduled have the finding
“edge” (consisting of the current node , the found
node, a current flow, and a total capacity in the di-
rection first to second node), recorded.

• This allows finding a reverse path from the target
node once reached, to the start node. Once a path is
found, the edges are examined to find the edge with
the minimum remaining capacity, and this becomes
the flow that will result along this path , and this
quantity is removed from the remaining capacity of
each edge along the path. At the “bottleneck” edge
with theminimum remaining capacity, nomore flow
will be possible, in the forward direction, but still
possible in the backward direction.

• This process of BFS for a path to the target node,
filling up the path to the bottleneck edge’s residual
capacity, is repeated, until BFS cannot find a path
to the target node ( the node is not reached because
all sequences of edges leading to the target have had
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their bottleneck edges filled). Hence memory of the
side effects of previous paths found, is recorded in
the flows of the edges, and affect the results of future
searches.

• An important property of maximal flow is that flow
can occur in the backward direction of an edge, and
the residual capacity in the backward direction is the
current flow in the foward direction. Normally, the
residual capacity in the forward direction of an edge
is the initial capacity less forward flow. Intuitively,
this allows more options for maximizing flow as ear-
lier augmenting paths block off shorter paths.

• On termination, the algorithmwill retain themarked
and unmarked states of the results of the last BFS.

• the minimum cut state is the two sets of marked and
unmarked nodes formed from the last unsuccessful
BFS starting from the start node, and not marking
the target the node. The start node belongs to one
side of the cut, and the target node belongs to the
other. Arbitrarily, being “in Cut” means being on
the start side, or being a marked node. Recall how
are a node comes to be marked, given an edge with
a flow and a residual capacity.

Example application of Ford-Fulkerson maximum
flow/ minimum cut

An example of application of Ford-Fulkerson is in base-
ball season elimination. The question is whether the team
can possibly win the whole season by exceeding some
combination of wins of the other teams.
The idea is that a flow graph is set up with teams not be-
ing able to exceed the number of total wins which a target
team can maximally win for the entire season. There are
game nodes whose edges represent the number of remain-
ing matches between two teams, and each game node
outflows to two team nodes, via edges that will not limit
forward flow; team nodes receive edges from all games
they participate. Then outflow edges with win limiting
capacity flow to the virtual target node. In a maximal
flow state where the target node’s total wins will exceed
some combination of wins of the other teams, the penul-
timate depth-first search will cutoff the start node from
the rest of the graph, because no flow will be possible
to any of the game nodes, as a result of the penultimate
depth-first search (recall what happens to the flow , in the
second part of the algorithm after finding the path). This
is because in seeking the maximal flow of each path, the
game edges’ capacities will be maximally drained by the
win-limit edges further along the path, and any residual
game capacity means there are more games to be played
that will make at least one team overtake the target teams’
maximal wins. If a team node is in theminimum cut, then
there is an edge with residual capacity leading to the team,
which means what , given the previous statements? What

do the set of teams found in a minimum cut represent (
hint: consider the game node edge) ?

Example Maximum bipartite matching ( intern
matching )

This matching problem doesn't include preference
weightings. A set of companies offers jobs which are
made into one big set , and interns apply to companies for
specific jobs. The applications are edges with a weight of
1. To convert the bipartite matching problem to a max-
imum flow problem, virtual vertexes s and t are created
, which have weighted 1 edges from s to all interns, and
from all jobs to t. Then the Ford-Fulkerson algorithm is
used to sequentially saturate 1 capacity edges from the
graph, by augmenting found paths. It may happen that a
intermediate state is reached where left over interns and
jobs are unmatched, but backtracking along reverse edges
which have residual capacity = forward flow = 1, along
longer paths that occur later during breadth-first search,
will negate previous suboptimal augmenting paths, and
provide further search options for matching, and will ter-
minate only when maximal flow or maximum matching
is reached.
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Unweighted Graph Algorithms

Top, Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 9, A Please edit and
omit unweighted in title

9.1 Representation of Graph

9.1.1 Adjacency Matrix

Double plus good.

9.1.2 Adjacency List

HeLLO , difference?!

9.1.3 Comparison

the list might work better with level 1 cache with adja-
cency objects (which node, visited, inPath, pathWeight,
fromWhere).

9.2 Depth First Search

9.2.1 Pseudocode

dfs(vertex w) if w has already been marked visited return
mark w as visited for each adjacent vertex v dfs(v)
Non recursive DFS is more difficult. It requires that each
node keep memory of the last child visited, as it descends
the current child. One implementation uses a indexed ar-
ray of iterators, so on visiting a node, the node’s number
is an index into an array that stores the iterator for the
nodes child. Then the first iterator value is pushed onto
the job stack. Peek not pop is used to examine the cur-
rent top of the stack, and pop is only invoked when the
iterator for the peeked node is exhausted.

9.2.2 Properties

9.2.3 Classification of Edge

Tree Edge

Backward Edge

Forward Edge

Cross Edge

IT is good techniques from :Yogesh Jakhar

9.3 Breadth First Search

9.3.1 Pseudocode

bfs ( x ):
q insert x; while (q not empty ) y = remove head q visit y
mark y for each z adjacent y q add tail z

9.3.2 Example

9.3.3 Correctness

9.3.4 Analysis

9.3.5 Usage

A breadth first search can be used to explore a database
schema, in an attempt to turn it into an xml schema. This
is done by naming the root table, and then doing a ref-
erential breadth first search . The search is both done on
the refering and referred ends, so if another table refers
to to the current node being searched, than that table has
a one-to-many relationship in the xml schema, otherwise
it is many-to-one.

9.4 Classical Graph Problems
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9.4.1 Directed graph cycle detection

In a directed graph, check is *acyclic* by having a sec-
ond marker on before dfs recursive call and off after, and
checking for second marker before original mark check
in dfs adjacency traversal. If second marker present, then
cycle exists.

9.4.2 Topological Sort of Directed Graph

1. check for cycle as in previous section.

2. dfs the acyclic graph. Reverse postorder by storing
on stack instead of queue after dfs calls on adjacent
nodes.

The last node on stack must be there from first dfs call,
and removing the last node exposes the second node
which can only have been reached by last node. Use in-
duction to show topological order.

9.4.3 Strongly Connected Components in
Directed Graphs

1. Strong connected components have cycles within
and must by acyclic between components ( the ker-
nel directed acyclic graph).

2. Difference between dfs reverse postorder of origi-
nal graph vs the same on reverse graph is that first
node is least dependent in latter. Thus all non strong
connected nodes will be removed first by dfs on the
original graph in the latter’s order, and then dfs will
remove only strongly connected nodes by marking
, one SC component at each iteration over reverse
postorder of reverse graph , visiting unmarked nodes
only. Each outgoing edge from a SC component be-
ing traversed will go to an already marked node due
to reverse postorder on reverse graph.

9.4.4 Articulation Vertex

9.4.5 Bridge

9.4.6 Diameter

Top, Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 9, A

https://en.wikibooks.org/wiki/Algorithms
https://en.wikibooks.org/wiki/Algorithms/Introduction
https://en.wikibooks.org/wiki/Algorithms/Mathematical_Background
https://en.wikibooks.org/wiki/Algorithms/Divide_and_Conquer
https://en.wikibooks.org/wiki/Algorithms/Randomization
https://en.wikibooks.org/wiki/Algorithms/Backtracking
https://en.wikibooks.org/wiki/Algorithms/Dynamic_Programming
https://en.wikibooks.org/wiki/Algorithms/Greedy_Algorithms
https://en.wikibooks.org/wiki/Algorithms/Hill_Climbing
https://en.wikibooks.org/wiki/Algorithms/Unweighted_Graph_Algorithms
https://en.wikibooks.org/wiki/Algorithms/Ada_Implementation


Chapter 10

Distance approximations

Calculating distances is common in spatial and other
search algorithms, as well as in computer game physics
engines. However, the common Euclidean distance re-
quires calculating square roots, which is often a rela-
tively heavy operation on a CPU.

10.1 You don't need a square root
to compare distances

Given (x1, y1) and (x2, y2), which is closer to the origin
by Euclidean distance? You might be tempted to calcu-
late the two Euclidean distances, and compare them:
d1 = sqrt(x1^2 + y1^2) d2 = sqrt(x2^2 + y2^2) return d1
> d2
But those square roots are often heavy to compute, and
what’s more, you don't need to compute them at all. Do
this instead:
dd1 = x1^2 + y1^2 dd2 = x2^2 + y2^2 return dd1 > dd2
The result is exactly the same (because the positive square
root is a strictly monotonic function). This only works for
comparing distances though, not for calculating individual
values, which is sometimes what you need. So we look at
approximations.

10.2 Approximations of Euclidean
distance

10.2.1 Taxicab/Manhattan/L1

The w:taxicab distance is one of the simplest to compute,
so use it when you're very tight on resources:
Given two points (x1, y1) and (x2, y2),

dx = |x1− x2| (w:absolute value)
dy = |y1− y2|
d = dx+ dy (taxicab distance)

Note that you can also use it as a “first pass” since it’s

never lower than the Euclidean distance. You could
check if data points are within a particular bounding box,
as a first pass for checking if they are within the bounding
sphere that you're really interested in. In fact, if you take
this idea further, you end up with an efficient spatial data
structure such as a w:Kd-tree.
However, be warned that taxicab distance is not
w:isotropic - if you're in a Euclidean space, taxicab dis-
tances change a lot depending on which way your “grid”
is aligned. This can lead to big discrepancies if you use it
as a drop-in replacement for Euclidean distance. Octag-
onal distance approximations help to knock some of the
problematic corners off, giving better isotropy:

10.2.2 Octagonal

A fast approximation of 2D distance based on an octag-
onal boundary can be computed as follows.
Given two points (px, py) and (qx, qy) , Let dx = |px −
qx| (w:absolute value) and dy = |py − qy| . If dy > dx
, approximated distance is 0.41dx+ 0.941246dy .

Some years ago I developed a similar distance
approximation algorithm using three terms,
instead of just 2, which is much more accurate,
and because it uses power of 2 denominators
for the coefficients can be implemented
without using division hardware. The for-
mula is: 1007/1024 max(|x|,|y|) + 441/1024
min(|x|,|y|) - if ( max(|x|.|y|)<16min(|x|,|y|),
40/1024 max(|x|,|y|), 0 ). Also it is possible to
implement a distance approximation without
using either multiplication or division when
you have very limited hardware: ((( max <<
8 ) + ( max << 3 ) - ( max << 4 ) - ( max
<< 1 ) + ( min << 7 ) - ( min << 5 ) + (
min << 3 ) - ( min << 1 )) >> 8 ). This is
just like the 2 coefficient min max algorithm
presented earlier, but with the coefficients
123/128 and 51/128. I have an article about it
at http://web.oroboro.com:90/rafael/docserv.
php/index/programming/article/distance
--Rafael
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(Apparently that article has moved to
http://www.flipcode.com/archives/Fast_
Approximate_Distance_Functions.shtml ?)

(Source for this section)
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Appendix A: Ada Implementation

Top, Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 9, A

11.1 Introduction

Welcome to the Ada implementations of the Algorithms
Wikibook. For those who are new to Ada Programming
a few notes:

• All examples are fully functional with all the needed
input and output operations. However, only the code
needed to outline the algorithms at hand is copied
into the text - the full samples are available via the
download links. (Note: It can take up to 48 hours until
the cvs is updated).

• We seldom use predefined types in the sample code
but define special types suitable for the algorithms at
hand.

• Ada allows for default function parameters; how-
ever, we always fill in and name all parameters, so
the reader can see which options are available.

• We seldom use shortcuts - like using the attributes
Image or Value for String <=> Integer conversions.

All these rules make the code more elaborate than per-
haps needed. However, we also hope it makes the code
easier to understand

11.2 Chapter 1: Introduction

The following subprograms are implementations of the
Inventing an Algorithm examples.

11.2.1 To Lower

The Ada example code does not append to the array as
the algorithms. Instead we create an empty array of the
desired length and then replace the characters inside.
File: to_lower_1.adb (view, plain text, download page,
browse all)

function To_Lower (C : Character) return Character
renames Ada.Characters.Handling.To_Lower; -- tolower
- translates all alphabetic, uppercase characters -- in str to
lowercase function To_Lower (Str : String) return String
is Result : String (Str'Range); begin for C in Str'Range
loop Result (C) := To_Lower (Str (C)); end loop; return
Result; end To_Lower;
Would the append approach be impossible withAda? No,
but it would be significantly more complex and slower.

11.2.2 Equal Ignore Case

File: to_lower_2.adb (view, plain text, download page,
browse all)
-- equal-ignore-case -- returns true if s or t are equal, --
ignoring case function Equal_Ignore_Case (S : String; T :
String) return Boolean is O : constant Integer := S'First -
T'First; begin if T'Length /= S'Length then return False;
-- if they aren't the same length, they -- aren't equal else
for I in S'Range loop if To_Lower (S (I)) /= To_Lower (T
(I + O)) then return False; end if; end loop; end if; return
True; end Equal_Ignore_Case;

11.3 Chapter 6: Dynamic Pro-
gramming

11.3.1 Fibonacci numbers

The following codes are implementations of the
Fibonacci-Numbers examples.

Simple Implementation

File: fibonacci_1.adb (view, plain text, download page,
browse all)
...
To calculate Fibonacci numbers negative values are not
needed so we define an integer type which starts at 0.
With the integer type defined you can calculate up until
Fib (87). Fib (88) will result in an Constraint_Error.
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type Integer_Type is range 0 ..
999_999_999_999_999_999;
You might notice that there is not equivalence for the as-
sert (n >= 0) from the original example. Ada will test the
correctness of the parameter before the function is called.
function Fib (n : Integer_Type) return Integer_Type is
begin if n = 0 then return 0; elsif n = 1 then return 1; else
return Fib (n - 1) + Fib (n - 2); end if; end Fib; ...

Cached Implementation

File: fibonacci_2.adb (view, plain text, download page,
browse all)
...
For this implementation we need a special cache type can
also store a −1 as “not calculated” marker
type Cache_Type is range −1 ..
999_999_999_999_999_999;
The actual type for calculating the fibonacci numbers
continues to start at 0. As it is a subtype of the cache
type Ada will automatically convert between the two. (the
conversion is - of course - checked for validity)

subtype Integer_Type is Cache_Type range 0 ..
Cache_Type'Last;
In order to know how large the cache need to be we first
read the actual value from the command line.
Value : constant Integer_Type := Integer_Type'Value
(Ada.Command_Line.Argument (1));
The Cache array starts with element 2 since Fib (0) and
Fib (1) are constants and ends with the value we want to
calculate.
type Cache_Array is array (Integer_Type range 2 ..
Value) of Cache_Type;
The Cache is initialized to the first valid value of the cache
type — this is −1.
F : Cache_Array := (others => Cache_Type'First);
What follows is the actual algorithm.
function Fib (N : Integer_Type) return Integer_Type is
begin if N = 0 or else N = 1 then return N; elsif F (N) /=
Cache_Type'First then return F (N); else F (N) := Fib (N
- 1) + Fib (N - 2); return F (N); end if; end Fib; ...
This implementation is faithful to the original from the
Algorithms book. However, in Ada you would normally
do it a little different:
File: fibonacci_3.adb (view, plain text, download page,
browse all)

when you use a slightly larger array which also stores the
elements 0 and 1 and initializes them to the correct values
type Cache_Array is array (Integer_Type range 0 ..

Value) of Cache_Type; F : Cache_Array := (0 => 0, 1
=> 1, others => Cache_Type'First);
and then you can remove the first if path.
if N = 0 or else N = 1 then return N; elsif F (N) /=
Cache_Type'First then
This will save about 45% of the execution-time (measured
on Linux i686) while needing only two more elements in
the cache array.

Memory Optimized Implementation

This version looks just like the original in WikiCode.
File: fibonacci_4.adb (view, plain text, download page,
browse all)
type Integer_Type is range 0 ..
999_999_999_999_999_999; function Fib (N : In-
teger_Type) return Integer_Type is U : Integer_Type
:= 0; V : Integer_Type := 1; begin for I in 2 .. N loop
Calculate_Next : declare T : constant Integer_Type :=
U + V; begin U := V; V := T; end Calculate_Next; end
loop; return V; end Fib;

No 64 bit integers

Your Ada compiler does not support 64 bit integer num-
bers? Then you could try to use decimal numbers instead.
Using decimal numbers results in a slower program (takes
about three times as long) but the result will be the same.
The following example shows you how to define a suitable
decimal type. Do experiment with the digits and range
parameters until you get the optimum out of your Ada
compiler.
File: fibonacci_5.adb (view, plain text, download page,
browse all)
type Integer_Type is delta 1.0 digits 18 range 0.0 ..
999_999_999_999_999_999.0;
You should know that floating point numbers are unsuit-
able for the calculation of fibonacci numbers. They will
not report an error condition when the number calculated
becomes too large — instead they will lose in precision
which makes the result meaningless.
Top, Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 9, A
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