
LDAP Authentication
Abstract

This document is intended as a guide for the configuration of an LDAP server (principally an
OpenLDAP server) for authentication on FreeBSD. This is useful for situations where many servers
need the same user accounts, for example as a replacement for NIS.

1. Preface
This document is intended to give the reader enough of an understanding of LDAP to configure an
LDAP server. This document will attempt to provide an explanation of net/nss_ldap and
security/pam_ldap for use with client machines services for use with the LDAP server.

When finished, the reader should be able to configure and deploy a FreeBSD server that can host an
LDAP directory, and to configure and deploy a FreeBSD server which can authenticate against an
LDAP directory.

This article is not intended to be an exhaustive account of the security, robustness, or best practice
considerations for configuring LDAP or the other services discussed herein. While the author takes
care to do everything correctly, they do not address security issues beyond a general scope. This
article should be considered to lay the theoretical groundwork only, and any actual implementation
should be accompanied by careful requirement analysis.

2. Configuring LDAP
LDAP stands for "Lightweight Directory Access Protocol" and is a subset of the X.500 Directory
Access Protocol. Its most recent specifications are in RFC4510 and friends. Essentially it is a
database that expects to be read from more often than it is written to.

The LDAP server OpenLDAP will be used in the examples in this document; while the principles
here should be generally applicable to many different servers, most of the concrete administration
is OpenLDAP-specific. There are several server versions in ports, for example net/openldap24-

Table of Contents
1. Preface . 1

2. Configuring LDAP. 1

3. Client Configuration. 6

4. Security Considerations . 10

Appendix A: Useful Aids . 13

Appendix B: OpenSSL Certificates for LDAP . 13

1

https://cgit.freebsd.org/ports/tree/net/nss_ldap/pkg-descr
https://cgit.freebsd.org/ports/tree/security/pam_ldap/pkg-descr
http://www.ietf.org/rfc/rfc4510.txt
http://www.openldap.org/
https://cgit.freebsd.org/ports/tree/net/openldap24-server/pkg-descr

server. Client servers will need the corresponding net/openldap24-client libraries.

There are (basically) two areas of the LDAP service which need configuration. The first is setting up
a server to receive connections properly, and the second is adding entries to the server’s directory
so that FreeBSD tools know how to interact with it.

2.1. Setting Up the Server for Connections

This section is specific to OpenLDAP. If you are using another server, you will need
to consult that server’s documentation.

2.1.1. Installing OpenLDAP

First, install OpenLDAP:

Example 1. Installing OpenLDAP

cd /usr/ports/net/openldap24-server
make install clean

This installs the slapd and slurpd binaries, along with the required OpenLDAP libraries.

2.1.2. Configuring OpenLDAP

Next we must configure OpenLDAP.

You will want to require encryption in your connections to the LDAP server; otherwise your users'
passwords will be transferred in plain text, which is considered insecure. The tools we will be using
support two very similar kinds of encryption, SSL and TLS.

TLS stands for "Transportation Layer Security". Services that employ TLS tend to connect on the
same ports as the same services without TLS; thus an SMTP server which supports TLS will listen
for connections on port 25, and an LDAP server will listen on 389.

SSL stands for "Secure Sockets Layer", and services that implement SSL do not listen on the same
ports as their non-SSL counterparts. Thus SMTPS listens on port 465 (not 25), HTTPS listens on 443,
and LDAPS on 636.

The reason SSL uses a different port than TLS is because a TLS connection begins as plain text, and
switches to encrypted traffic after the STARTTLS directive. SSL connections are encrypted from the
beginning. Other than that there are no substantial differences between the two.

 We will adjust OpenLDAP to use TLS, as SSL is considered deprecated.

Once OpenLDAP is installed via ports, the following configuration parameters in
/usr/local/etc/openldap/slapd.conf will enable TLS:

2

https://cgit.freebsd.org/ports/tree/net/openldap24-server/pkg-descr
https://cgit.freebsd.org/ports/tree/net/openldap24-client/pkg-descr

security ssf=128

TLSCertificateFile /path/to/your/cert.crt
TLSCertificateKeyFile /path/to/your/cert.key
TLSCACertificateFile /path/to/your/cacert.crt

Here, ssf=128 tells OpenLDAP to require 128-bit encryption for all connections, both search and
update. This parameter may be configured based on the security needs of your site, but rarely you
need to weaken it, as most LDAP client libraries support strong encryption.

The cert.crt, cert.key, and cacert.crt files are necessary for clients to authenticate you as the valid
LDAP server. If you simply want a server that runs, you can create a self-signed certificate with
OpenSSL:

Example 2. Generating an RSA Key

% openssl genrsa -out cert.key 1024
Generating RSA private key, 1024 bit long modulus
....................++++++
...++++++
e is 65537 (0x10001)

% openssl req -new -key cert.key -out cert.csr

At this point you should be prompted for some values. You may enter whatever values you like;
however, it is important the "Common Name" value be the fully qualified domain name of the
OpenLDAP server. In our case, and the examples here, the server is server.example.org. Incorrectly
setting this value will cause clients to fail when making connections. This can the cause of great
frustration, so ensure that you follow these steps closely.

Finally, the certificate signing request needs to be signed:

Example 3. Self-signing the Certificate

% openssl x509 -req -in cert.csr -days 365 -signkey cert.key -out cert.crt
Signature ok
subject=/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd
Getting Private key

This will create a self-signed certificate that can be used for the directives in slapd.conf, where
cert.crt and cacert.crt are the same file. If you are going to use many OpenLDAP servers (for
replication via slurpd) you will want to see OpenSSL Certificates for LDAP to generate a CA key and
use it to sign individual server certificates.

Once this is done, put the following in /etc/rc.conf:

3

slapd_enable="YES"

Then run /usr/local/etc/rc.d/slapd start. This should start OpenLDAP. Confirm that it is listening
on 389 with

% sockstat -4 -p 389
ldap slapd 3261 7 tcp4 *:389 *:*

2.1.3. Configuring the Client

Install the net/openldap24-client port for the OpenLDAP libraries. The client machines will always
have OpenLDAP libraries since that is all security/pam_ldap and net/nss_ldap support, at least for
the moment.

The configuration file for the OpenLDAP libraries is /usr/local/etc/openldap/ldap.conf. Edit this file
to contain the following values:

base dc=example,dc=org
uri ldap://server.example.org/
ssl start_tls
tls_cacert /path/to/your/cacert.crt

It is important that your clients have access to cacert.crt, otherwise they will not be
able to connect.

There are two files called ldap.conf. The first is this file, which is for the OpenLDAP
libraries and defines how to talk to the server. The second is
/usr/local/etc/ldap.conf, and is for pam_ldap.

At this point you should be able to run ldapsearch -Z on the client machine; -Z means "use TLS". If
you encounter an error, then something is configured wrong; most likely it is your certificates. Use
openssl(1)'s s_client and s_server to ensure you have them configured and signed properly.

2.2. Entries in the Database
Authentication against an LDAP directory is generally accomplished by attempting to bind to the
directory as the connecting user. This is done by establishing a "simple" bind on the directory with
the user name supplied. If there is an entry with the uid equal to the user name and that entry’s
userPassword attribute matches the password supplied, then the bind is successful.

The first thing we have to do is figure out is where in the directory our users will live.

The base entry for our database is dc=example,dc=org. The default location for users that most
clients seem to expect is something like ou=people,base, so that is what will be used here. However
keep in mind that this is configurable.

4

https://cgit.freebsd.org/ports/tree/net/openldap24-client/pkg-descr
https://cgit.freebsd.org/ports/tree/security/pam_ldap/pkg-descr
https://cgit.freebsd.org/ports/tree/net/nss_ldap/pkg-descr
https://man.freebsd.org/cgi/man.cgi?query=openssl&sektion=1&format=html

So the ldif entry for the people organizational unit will look like:

dn: ou=people,dc=example,dc=org
objectClass: top
objectClass: organizationalUnit
ou: people

All users will be created as subentries of this organizational unit.

Some thought might be given to the object class your users will belong to. Most tools by default will
use people, which is fine if you simply want to provide entries against which to authenticate.
However, if you are going to store user information in the LDAP database as well, you will probably
want to use inetOrgPerson, which has many useful attributes. In either case, the relevant schemas
need to be loaded in slapd.conf.

For this example we will use the person object class. If you are using inetOrgPerson, the steps are
basically identical, except that the sn attribute is required.

To add a test-user named tuser, the ldif would be:

dn: uid=tuser,ou=people,dc=example,dc=org
objectClass: person
objectClass: posixAccount
objectClass: shadowAccount
objectClass: top
uidNumber: 10000
gidNumber: 10000
homeDirectory: /home/tuser
loginShell: /bin/csh
uid: tuser
cn: tuser

I start my LDAP users' UIDs at 10000 to avoid collisions with system accounts; you can configure
whatever number you wish here, as long as it is less than 65536.

We also need group entries. They are as configurable as user entries, but we will use the defaults
below:

dn: ou=groups,dc=example,dc=org
objectClass: top
objectClass: organizationalUnit
ou: groups

dn: cn=tuser,ou=groups,dc=example,dc=org
objectClass: posixGroup
objectClass: top
gidNumber: 10000

5

cn: tuser

To enter these into your database, you can use slapadd or ldapadd on a file containing these entries.
Alternatively, you can use sysutils/ldapvi.

The ldapsearch utility on the client machine should now return these entries. If it does, your
database is properly configured to be used as an LDAP authentication server.

3. Client Configuration
The client should already have OpenLDAP libraries from Configuring the Client, but if you are
installing several client machines you will need to install net/openldap24-client on each of them.

FreeBSD requires two ports to be installed to authenticate against an LDAP server,
security/pam_ldap and net/nss_ldap.

3.1. Authentication
security/pam_ldap is configured via /usr/local/etc/ldap.conf.

This is a different file than the OpenLDAP library functions' configuration file,
/usr/local/etc/openldap/ldap.conf; however, it takes many of the same options; in
fact it is a superset of that file. For the rest of this section, references to ldap.conf
will mean /usr/local/etc/ldap.conf.

Thus, we will want to copy all of our original configuration parameters from openldap/ldap.conf to
the new ldap.conf. Once this is done, we want to tell security/pam_ldap what to look for on the
directory server.

We are identifying our users with the uid attribute. To configure this (though it is the default), set
the pam_login_attribute directive in ldap.conf:

Example 4. Setting pam_login_attribute

pam_login_attribute uid

With this set, security/pam_ldap will search the entire LDAP directory under base for the value
uid=username. If it finds one and only one entry, it will attempt to bind as that user with the
password it was given. If it binds correctly, then it will allow access. Otherwise it will fail.

Users whose shell is not in /etc/shells will not be able to log in. This is particularly important when
Bash is set as the user shell on the LDAP server. Bash is not included with a default installation of
FreeBSD. When installed from a package or port, it is located at /usr/local/bin/bash. Verify that the
path to the shell on the server is set correctly:

6

https://cgit.freebsd.org/ports/tree/sysutils/ldapvi/pkg-descr
https://cgit.freebsd.org/ports/tree/net/openldap24-client/pkg-descr
https://cgit.freebsd.org/ports/tree/security/pam_ldap/pkg-descr
https://cgit.freebsd.org/ports/tree/net/nss_ldap/pkg-descr
https://cgit.freebsd.org/ports/tree/security/pam_ldap/pkg-descr
https://cgit.freebsd.org/ports/tree/security/pam_ldap/pkg-descr
https://cgit.freebsd.org/ports/tree/security/pam_ldap/pkg-descr

% getent passwd username

There are two choices when the output shows /bin/bash in the last column. The first is to change
the user’s entry on the LDAP server to /usr/local/bin/bash. The second option is to create a symlink
on the LDAP client computer so Bash is found at the correct location:

ln -s /usr/local/bin/bash /bin/bash

Make sure that /etc/shells contains entries for both /usr/local/bin/bash and /bin/bash. The user will
then be able to log in to the system with Bash as their shell.

3.1.1. PAM

PAM, which stands for "Pluggable Authentication Modules", is the method by which FreeBSD
authenticates most of its sessions. To tell FreeBSD we wish to use an LDAP server, we will have to
add a line to the appropriate PAM file.

Most of the time the appropriate PAM file is /etc/pam.d/sshd, if you want to use SSH (remember to
set the relevant options in /etc/ssh/sshd_config, otherwise SSH will not use PAM).

To use PAM for authentication, add the line

auth sufficient /usr/local/lib/pam_ldap.so no_warn

Exactly where this line shows up in the file and which options appear in the fourth column
determine the exact behavior of the authentication mechanism; see pam(d)

With this configuration you should be able to authenticate a user against an LDAP directory. PAM
will perform a bind with your credentials, and if successful will tell SSH to allow access.

However it is not a good idea to allow every user in the directory into every client machine. With
the current configuration, all that a user needs to log into a machine is an LDAP entry. Fortunately
there are a few ways to restrict user access.

ldap.conf supports a pam_groupdn directive; every account that connects to this machine needs to be
a member of the group specified here. For example, if you have

pam_groupdn cn=servername,ou=accessgroups,dc=example,dc=org

in ldap.conf, then only members of that group will be able to log in. There are a few things to bear
in mind, however.

Members of this group are specified in one or more memberUid attributes, and each attribute must
have the full distinguished name of the member. So memberUid: someuser will not work; it must be:

7

https://man.freebsd.org/cgi/man.cgi?query=pam&sektion=d&format=html

memberUid: uid=someuser,ou=people,dc=example,dc=org

Additionally, this directive is not checked in PAM during authentication, it is checked during
account management, so you will need a second line in your PAM files under account. This will
require, in turn, every user to be listed in the group, which is not necessarily what we want. To
avoid blocking users that are not in LDAP, you should enable the ignore_unknown_user attribute.
Finally, you should set the ignore_authinfo_unavail option so that you are not locked out of every
computer when the LDAP server is unavailable.

Your pam.d/sshd might then end up looking like this:

Example 5. Sample pam.d/sshd

auth required pam_nologin.so no_warn
auth sufficient pam_opie.so no_warn no_fake_prompts
auth requisite pam_opieaccess.so no_warn allow_local
auth sufficient /usr/local/lib/pam_ldap.so no_warn
auth required pam_unix.so no_warn try_first_pass

account required pam_login_access.so
account required /usr/local/lib/pam_ldap.so no_warn
ignore_authinfo_unavail ignore_unknown_user

Since we are adding these lines specifically to pam.d/sshd, this will only have an
effect on SSH sessions. LDAP users will be unable to log in at the console. To
change this behavior, examine the other files in /etc/pam.d and modify them
accordingly.

3.2. Name Service Switch
NSS is the service that maps attributes to names. So, for example, if a file is owned by user 1001, an
application will query NSS for the name of 1001, and it might get bob or ted or whatever the user’s
name is.

Now that our user information is kept in LDAP, we need to tell NSS to look there when queried.

The net/nss_ldap port does this. It uses the same configuration file as security/pam_ldap, and should
not need any extra parameters once it is installed. Instead, what is left is simply to edit
/etc/nsswitch.conf to take advantage of the directory. Simply replace the following lines:

group: compat
passwd: compat

with

8

https://cgit.freebsd.org/ports/tree/net/nss_ldap/pkg-descr
https://cgit.freebsd.org/ports/tree/security/pam_ldap/pkg-descr

group: files ldap
passwd: files ldap

This will allow you to map usernames to UIDs and UIDs to usernames.

Congratulations! You should now have working LDAP authentication.

3.3. Caveats
Unfortunately, as of the time this was written FreeBSD did not support changing user passwords
with passwd(1). As a result of this, most administrators are left to implement a solution themselves.
I provide some examples here. Note that if you write your own password change script, there are
some security issues you should be made aware of; see Password Storage

Example 6. Shell Script for Changing Passwords

#!/bin/sh

stty -echo
read -p "Old Password: " oldp; echo
read -p "New Password: " np1; echo
read -p "Retype New Password: " np2; echo
stty echo

if ["$np1" != "$np2"]; then
 echo "Passwords do not match."
 exit 1
fi

ldappasswd -D uid="$USER",ou=people,dc=example,dc=org \
 -w "$oldp" \
 -a "$oldp" \
 -s "$np1"

This script does hardly any error checking, but more important it is very cavalier
about how it stores your passwords. If you do anything like this, at least adjust the
security.bsd.see_other_uids sysctl value:

sysctl security.bsd.see_other_uids=0

A more flexible (and probably more secure) approach can be used by writing a custom program, or
even a web interface. The following is part of a Ruby library that can change LDAP passwords. It
sees use both on the command line, and on the web.

9

https://man.freebsd.org/cgi/man.cgi?query=passwd&sektion=1&format=html

Example 7. Ruby Script for Changing Passwords

require 'ldap'
require 'base64'
require 'digest'
require 'password' # ruby-password

ldap_server = "ldap.example.org"
luser = "uid=#{ENV['USER']},ou=people,dc=example,dc=org"

get the new password, check it, and create a salted hash from it
def get_password
 pwd1 = Password.get("New Password: ")
 pwd2 = Password.get("Retype New Password: ")

 raise if pwd1 != pwd2
 pwd1.check # check password strength

 salt = rand.to_s.gsub(/0\./, '')
 pass = pwd1.to_s
 hash =
"{SSHA}"+Base64.encode64(Digest::SHA1.digest("#{pass}#{salt}")+salt).chomp!
 return hash
end

oldp = Password.get("Old Password: ")
newp = get_password

We'll just replace it. That we can bind proves that we either know
the old password or are an admin.

replace = LDAP::Mod.new(LDAP::LDAP_MOD_REPLACE | LDAP::LDAP_MOD_BVALUES,
 "userPassword",
 [newp])

conn = LDAP::SSLConn.new(ldap_server, 389, true)
conn.set_option(LDAP::LDAP_OPT_PROTOCOL_VERSION, 3)
conn.bind(luser, oldp)
conn.modify(luser, [replace])

Although not guaranteed to be free of security holes (the password is kept in memory, for example)
this is cleaner and more flexible than a simple sh script.

4. Security Considerations
Now that your machines (and possibly other services) are authenticating against your LDAP server,
this server needs to be protected at least as well as /etc/master.passwd would be on a regular

10

server, and possibly even more so since a broken or cracked LDAP server would break every client
service.

Remember, this section is not exhaustive. You should continually review your configuration and
procedures for improvements.

4.1. Setting Attributes Read-only
Several attributes in LDAP should be read-only. If left writable by the user, for example, a user
could change his uidNumber attribute to 0 and get root access!

To begin with, the userPassword attribute should not be world-readable. By default, anyone who can
connect to the LDAP server can read this attribute. To disable this, put the following in slapd.conf:

Example 8. Hide Passwords

access to dn.subtree="ou=people,dc=example,dc=org"
 attrs=userPassword
 by self write
 by anonymous auth
 by * none

access to *
 by self write
 by * read

This will disallow reading of the userPassword attribute, while still allowing users to change their
own passwords.

Additionally, you’ll want to keep users from changing some of their own attributes. By default,
users can change any attribute (except for those which the LDAP schemas themselves deny
changes), such as uidNumber. To close this hole, modify the above to

Example 9. Read-only Attributes

access to dn.subtree="ou=people,dc=example,dc=org"
 attrs=userPassword
 by self write
 by anonymous auth
 by * none

access to attrs=homeDirectory,uidNumber,gidNumber
 by * read

access to *
 by self write
 by * read

11

This will stop users from being able to masquerade as other users.

4.2. root Account Definition
Often the root or manager account for the LDAP service will be defined in the configuration file.
OpenLDAP supports this, for example, and it works, but it can lead to trouble if slapd.conf is
compromised. It may be better to use this only to bootstrap yourself into LDAP, and then define a
root account there.

Even better is to define accounts that have limited permissions, and omit a root account entirely.
For example, users that can add or remove user accounts are added to one group, but they cannot
themselves change the membership of this group. Such a security policy would help mitigate the
effects of a leaked password.

4.2.1. Creating a Management Group

Say you want your IT department to be able to change home directories for users, but you do not
want all of them to be able to add or remove users. The way to do this is to add a group for these
admins:

Example 10. Creating a Management Group

dn: cn=homemanagement,dc=example,dc=org
objectClass: top
objectClass: posixGroup
cn: homemanagement
gidNumber: 121 # required for posixGroup
memberUid: uid=tuser,ou=people,dc=example,dc=org
memberUid: uid=user2,ou=people,dc=example,dc=org

And then change the permissions attributes in slapd.conf:

Example 11. ACLs for a Home Directory Management Group

access to dn.subtree="ou=people,dc=example,dc=org"
 attr=homeDirectory
 by dn="cn=homemanagement,dc=example,dc=org"
 dnattr=memberUid write

Now tuser and user2 can change other users' home directories.

In this example we have given a subset of administrative power to certain users without giving
them power in other domains. The idea is that soon no single user account has the power of a root
account, but every power root had is had by at least one user. The root account then becomes
unnecessary and can be removed.

12

4.3. Password Storage
By default OpenLDAP will store the value of the userPassword attribute as it stores any other data: in
the clear. Most of the time it is base 64 encoded, which provides enough protection to keep an
honest administrator from knowing your password, but little else.

It is a good idea, then, to store passwords in a more secure format, such as SSHA (salted SHA). This
is done by whatever program you use to change users' passwords.

Appendix A: Useful Aids
There are a few other programs that might be useful, particularly if you have many users and do
not want to configure everything manually.

security/pam_mkhomedir is a PAM module that always succeeds; its purpose is to create home
directories for users which do not have them. If you have dozens of client servers and hundreds of
users, it is much easier to use this and set up skeleton directories than to prepare every home
directory.

sysutils/cpu is a pw(8)-like utility that can be used to manage users in the LDAP directory. You can
call it directly, or wrap scripts around it. It can handle both TLS (with the -x flag) and SSL (directly).

sysutils/ldapvi is a great utility for editing LDAP values in an LDIF-like syntax. The directory (or
subsection of the directory) is presented in the editor chosen by the EDITOR environment variable.
This makes it easy to enable large-scale changes in the directory without having to write a custom
tool.

security/openssh-portable has the ability to contact an LDAP server to verify SSH keys. This is
extremely nice if you have many servers and do not want to copy your public keys across all of
them.

Appendix B: OpenSSL Certificates for LDAP
If you are hosting two or more LDAP servers, you will probably not want to use self-signed
certificates, since each client will have to be configured to work with each certificate. While this is
possible, it is not nearly as simple as creating your own certificate authority, and signing your
servers' certificates with that.

The steps here are presented as they are with very little attempt at explaining what is going on-
further explanation can be found in openssl(1) and its friends.

To create a certificate authority, we simply need a self-signed certificate and key. The steps for this
again are

Example 12. Creating a Certificate

% openssl genrsa -out root.key 1024

13

https://cgit.freebsd.org/ports/tree/security/pam_mkhomedir/pkg-descr
https://cgit.freebsd.org/ports/tree/sysutils/cpu/pkg-descr
https://man.freebsd.org/cgi/man.cgi?query=pw&sektion=8&format=html
https://cgit.freebsd.org/ports/tree/sysutils/ldapvi/pkg-descr
https://cgit.freebsd.org/ports/tree/security/openssh-portable/pkg-descr
https://man.freebsd.org/cgi/man.cgi?query=openssl&sektion=1&format=html

% openssl req -new -key root.key -out root.csr
% openssl x509 -req -days 1024 -in root.csr -signkey root.key -out root.crt

These will be your root CA key and certificate. You will probably want to encrypt the key and store
it in a cool, dry place; anyone with access to it can masquerade as one of your LDAP servers.

Next, using the first two steps above create a key ldap-server-one.key and certificate signing request
ldap-server-one.csr. Once you sign the signing request with root.key, you will be able to use ldap-
server-one.* on your LDAP servers.

Do not forget to use the fully qualified domain name for the "common name"
attribute when generating the certificate signing request; otherwise clients will
reject a connection with you, and it can be very tricky to diagnose.

To sign the key, use -CA and -CAkey instead of -signkey:

Example 13. Signing as a Certificate Authority

% openssl x509 -req -days 1024 \
-in ldap-server-one.csr -CA root.crt -CAkey root.key \
-out ldap-server-one.crt

The resulting file will be the certificate that you can use on your LDAP servers.

Finally, for clients to trust all your servers, distribute root.crt (the certificate, not the key!) to each
client, and specify it in the TLSCACertificateFile directive in ldap.conf.

14

	LDAP Authentication
	Table of Contents
	1. Preface
	2. Configuring LDAP
	3. Client Configuration
	4. Security Considerations
	Appendix A: Useful Aids
	Appendix B: OpenSSL Certificates for LDAP

